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Abstract 

 
One of the most notable effects in mechanics is the stabilization of the unstable upper equilibrium 

position of a symmetric body fixed from one point on its axis of symmetry, either by giving the 

body a suitable angular velocity or by adding a suitably spinned rotor along its axis. This effect is 

widely used in technology and in space dynamics. The aim of the present article is to explore the 

effect of the presence of a rotor on a simple periodic motion of the rigid body; its motion as a 

physical pendulum. The equation in the variation for pendulum vibrations takes the form 

,0)2)1(
2

1
(

3
2222

2
3

2

 


cnuusn
du

d
 

in which    depends on the moments of inertia,   on the gyrostatic momentum of the rotor 

and   (the modulus of the elliptic function) depends on the total energy of the motion. This 

equation, which reduces to Lame's equation when 0 was not studied to any extent in the 

literature. The determination of the zones of stability and instability of plane motion reduces to 

finding conditions on those parameters for existence of primitive periodic solutions (with periods 

4K(ν), 8K(ν)). Full analysis of primitive periodic solutions of this equation is performed analogous 

to that of Ince for Lame's equation. Zones of stability and instability are determined analytically 

and illustrated in a graphics form by plotting surfaces separating them in the three dimensional 

space of parameters. The problem is also solved numerically on certain sections of the parameter 

space and results are compared to analytical ones. 
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Introduction 

 

It was proved by Kovalevskaya that the solution 

of Euler-Poisson equations of motion of the rigid 

body about a fixed point can be expressed as 

meromorphic functions in time only in the three 

famous general integrable cases of Euler, 

Lagrange and the case which became known as 

Kovalevskaya's case [1] (see also [2]). Only in 

these same cases we have a fourth first integral of 

the Euler-Poisson's equations of motion as an 

algebraic (in fact, polynomial) function in Euler-

Poisson's variables. A set of particular solutions, 

corresponding to some restrictions imposed on 

the initial conditions of the motion in addition to 

those on the distribution of mass in the body was 

obtained by several authors, e.g. Goryachev and 

Chaplygin, Hess, Grioli, Bobylev and Steklov 

[2]. 

It is of great importance, with regard to the 
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practical applications of the problem, to perform 

a detailed qualitative analysis of some simple 

motions, such as steady motions or pendulum 

motions. Such analysis is done only for a few 

cases. Noting that only stable motion and 

equilibria can be realized due to the inevitable 

deviations in the initial conditions and in the 

determination of the distribution of mass in the 

body, the study of stability acquires an increasing 

importance. The study of Staude (permanent) 

rotations of the heavy rigid body about a fixed 

point was partially studied by Grammel [3] and 

in more detail by Rumyantsev [4]. The effect of 

damping was considered by Schiehlen [5]. The 

simplest case, after the permanent rotation, is the 

plane motion about a fixed horizontal axis, like a 

compound pendulum. These motions are either 

oscillations or rotations, according to the total 

energy of the body and they are periodic in time. 

The equations in the variations of periodic 

motions are linear equations with periodic 

coefficients. Thus, for the study of stability of a 

periodic motion of the rigid body we deal with 

six equations with periodic coefficients, which 

admit three integrals. The study of such system is 

quite difficult and can be performed mainly 

numerically. 

It is evident that the Euler-Poisson system of 

equations of motion of the rigid body can be 

reduced to a single second-order differential 

equation, by using the three known general 

integrals. However, several trials by various 

authors have failed to realize this maximal 

reduction because of great algebraic difficulties 

encountered [6], [7], [8], [9] or led to equations 

that are so complicated that they were never used 

in any application [10]. In 1976, Yehia solved the 

problem of maximal reduction of the equations of 

motion to a single second order differential 

equation involving isometric variables on the 

ellipsoid of inertia [11]. In 1983, he achieved 

reduction to a second-order equation involving 

two geometrical variables, namely, two 

components of the vector     constant in space, 

referred to principal axes of inertia of the body 

[12]. 

Being symmetric, transparent and relatively 

compact, this reduced equation turned out to be 

very useful in the study of stability of periodic 

motions. It was used as a basis of the stability 

analysis of plane (pendulum-like) motions of the 

rigid body in uniform gravity [13], [14] and in 

the approximate Newtonian gravitational field 

[15]. Plane motions and their stability were 

considered in some later papers on the basis of 

Euler-Poisson equations. Thai analyzed 

numerically the case of vibration for three values 

of energy parameter [16]. Dovbysh investigated 

some qualitative properties of rotational motions 

[17]. Markeev studied the stability of pendulum 

motions not only in the linear approximation [18] 

but also in the nonlinear setting, using reduction 

of the Hamiltonian to the Birkhoff normal form. 

However, this was done mainly for bodies, 

whose distribution of mass satisfies conditions of 

intgerable cases: for Kovalevskaya's case [19] 

and for the case of Goryachev and Chaplygin 

[20]. Stability analysis was performed also for 

some other known periodic solutions of the 

Euler-Poisson equations of motion. Grioli's 

regular processional motion is one of the most 

famous periodic solutions. Its stability was 

considered in Grioli's original 1947 paper [21] 

and later by other authors [22], [23] in a 

restricted setting. Tkhai studied the full problem 

numerically and obtained partial results [24]. The 

most exhaustive analysis of the stability of 

Grioli's motion was performed by Markeev in 

two papers [25], [26]. Zones of stability and 

instability were presented in the plane of the two 

parameters that determine the state of the system. 

Markeev also studied the stability of the periodic 

solution of Euler-Poisson equations known after 

Steklov [27]. The problem involves also two 

parameters and results are presented in their 

plane. In this paper we consider the stability of 

plane vibrational motion for dynamically 

symmetric body in presence of gyrostatic 

moment. The picture of zones of stability and 

instability is explored in the 3D space of 

parameters of the problem. 

 

The description of pendulum-like motions 

 

Consider the mechanical system known as the 

gyrostat composed of a rigid body  ,0S   fixed 

from a single point O , and a symmetric rotor 1S   

fixed from its axis of symmetry in the carrier 

body 0S  by means of a cylindrical hinge and 

rotating with a constant angular speed relative to

.0S  Let OXYZ  be an inertial reference frame 

with Z -axis directed vertically upwards and 

Oxyz    be the system of axes fixed in the body 

and coinciding with its principal axes at the fixed 

point. We introduce the following notation, 

where all vectors are referred to the system of 

principal axes Oxyz : ),,( rqp  is the angular 

velocity of the carrier body ,0S ),,(
321

  
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is the unit vector in the upward vertical direction,  

),,(
321

kkkk is the angular momentum of the 

rotor relative to 0S  (called also by many authors 

the gyrostatic moment), constant in 00 ,rS

,(
0

x ,
0

y )
0

z  is the position vector of the 

centre of mass of the whole system,  BA,  and C  

are the principal moments of inertia of the 

system. 

The equation of motion of the carrier-body  

0S  is usually written in the Euler-Poisson form 

[2]: 
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1
  rq  

where dots denote differentiation with respect 

to time. This system of equations admits the 

well-known three classical integrals [2]: 

Energy integral: 

     .  () (
2

1
302010

222 hzyxMgrCBqAp    (2)  

Area integral: 

.)()()(
332211
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Geometrical integral: 

 ,12
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2
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1
                  (4) 

where  h   and  f    are the energy and area 

constants, respectively. 

The plane motion of a rigid body is the 

motion when all the elements of the body move 

parallel to a fixed plane it is possible only when 

the centre of mass of the body is in one of the 

principal planes of inertia. This is the type of 

motion that will be considered in this paper. We 

deal with the case of dynamically symmetric 

body (i.e. B=A) and without loss of generality, 

we assume that its centre of mass lies on the x
 

axis. The rotor is directed along the axis of 

symmetry of the body, i.e. 

.00021
 zykk                    (5) 

 In this case Euler-Poisson's equations admits 

the particular solution  

,0
3
 qp                      (6) 

And r
21

,,  are given by the equations 

,
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2

 r                       (7) 

Substituting from (5) and (6) in (2)-(4) the 

three integrals of Euler-Poisson's equations take 

the form: 

,a,   
2

1
0

2

1
MgxharC     (8) 
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From (7) one may write 

.       ,sin,     cos
21

  r
 

Thus the equation (8) gives 

,
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Variational equation in the case of vibration 
 

In vibration motion ,aha 

consequently (11) takes the form: 

,
 sin
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where   .
2

2

a
ah   Substituting in (12) with          

 sin
we get: 
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so that 

 )0(  ),,( tt
C

a
uusn     (13) 

and the solution of Euler-Poisson equations 

describing the pendulum-like vibration can be 

written as: 
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)),,( 2 221( 1  usn
 
).,(  ),(  22  udnusn     (14) 

where dncnsn ,,  are Jacobi's elliptic functions 

with modulus  (e.g. [28]). Note that the solution 

is periodic with period )(4 K ; K  being the 

elliptic integral of the first kind. Fig. 1 illustrates 

the configuration of the system described in the 

last paragraph, the positions of the rotor and the 

centre of mass relative to the inertia spheroid of 

the body.  
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Fig. 1 the configuration of the system 
 

In [12], Yehia obtained the reduced equation 

using the known three general integrals of motion 

in terms of two of the components of vector    

as variables. For the problem under 

consideration, in view of the symmetry of the 

body AB   and in virtue of (5) and (9), this 

equation takes the form 
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The orbital stability problem 

 

The whole dynamics of the rigid body-gyrostat 

acted upon by potential forces is reduced to the 

2nd order differential equation each solution 

curve 

),(
133

 
                  (17) 

of this equation corresponds to a solution of 

the Euler-Poisson's equations. A closed curve 

corresponds a time periodic solution ),(   of the 

Euler-Poisson's equations (with possibly-infinite 

period). Equation (15) admits a solution  0
3
   

which corresponds a motion of the body about its 

third principal axis while this axis preserves a 

fixed horizontal position. By orbital stability of 

pendulum motion we mean stability of the 

motion with respect to the variable
3

 . This 

means stable motions are those for which 
3



remains small after perturbing the solution

0
3
  , while preserving the values of the 

energy and areas parameters  h   and  f   . We 

note that this concept of stability is geometric and 

means that the axis of rotation of the pendulum 

after perturbation remains near to the horizontal 

plane in which it existed in the unperturbed 

motion. Substituting from (16) and linearizing in

3


, equation (15) takes the form: 
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Substituting from (14) in (18), the equation in 

the case of vibration takes the final form: 

usn
du

d
2222
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where  Aa

k

A
C

2

32 ,  
 , and  u  is related 

to time by (13). 

Equation, (19) involves three parameters
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 ,,
. Due to the triangle inequalities satisfied 

by moments of inertia,   is restricted to the 

interval ]4,0( . The face 0   is excluded since 

the body turns on it into a straight rod and its 

centre of mass cannot remain outside it. The 

modulus of elliptic functions )1,0[ . The third 

parameter can take any real value, but one can 

show that it suffices to consider only  0  . In 

fact, reversing the sign of   together with a shift 

K2  in the argument  u   leaves equation (19) 

invariant. This means that the picture of stability 

zones is symmetric with respect to the sign of the 

gyrostatic moment. Thus, the physically 

admissible region of the parameter space is given 

}.0,10,40:,,{  R   

This equation was first derived in [12], where 

the preliminary stability analysis was performed 

for very small oscillations i.e. for infinitesimal 

values of the modulus    as for as we known, 

equation (19) was not investigated in the 

literature. Nothing is known about the analytical 

and qualitative properties of its solution for 

arbitrary values of the parameters. 

 

Primitive periodic solutions of the stability 

equation 

 

In case of absence of gyrostatic moment, 

equation (19) reduces to Lame's equation. In this 

case (19) is K4  - periodic while Lame's equation 

(when  0
3
k  ) is  K2  - periodic. This leads to 

great qualitative difference from the previous 

case. According to Floquet's theory [30] the study 

of the stability of linear differential equation with 

periodic coefficient reduces to finding primitive 

periodic solutions, since the space of parameters 

 ,,  is divided into distinct zones of stability 

and instability, separated by a certain set of 

boundaries corresponding to the four types of 

periodic solutions of the equation of variations. 

To find the periodic solutions of (19) is, in 

general, a hard task. We shall apply the 

procedure used by Ince for Lame's equation [31]. 

This will be done below the period of equation 

(19) is  K4   so its solution must be taken with 

period  )(8),(4  KK  . In this paper we use 

expansion in trigonometric series in the 

amplitude which are much more convenient than 

direct use of elliptic functions. We first transform 

this equation to the trigonometric form through 

the substitution: .   

uamsnu        ,sin    
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where: 
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Primitive periodic solutions of the stability 

equation (19) 

 

K4  - Periodic solution 

Such solution can be expressed as Fourier series, 

solution of the trigonometric form (20)  

))sin()cos((
0

3
 iBiA

ii
i

 




      (21) 

Substituting from (21) in(20), equating the 

coefficients of  sine and cosine functions to zero, 

we have an infinite system of equations for  
i

A

and  
i

B  . In this way we obtain a system that can 

be split into two systems i.e., 

, 0),,( , 0),,(  wv  BA  

where  ),,(),,,(  BA   are square 

penta-diagonal matrices of infinite dimension and  

v   is an infinite column vector where the 

elements are coefficients of cosine (20) and  w   

is an infinite column vector where the elements 

are coefficients of sine (20). To have a non-trivial 

solution, the determinants of  A   and  B   must 

be equal zero, giving a condition in the form  

,0),,( f  (22) 

which determines some surfaces in the    

space on which odd and even periodic solutions 

of period K4  for (19 ) exist. Of course, it is 

difficult to calculate a determinant of the infinite 

matrix. So we should truncate the infinite 

sequence of equations after the  m -th equations, 

where  m   is a suitably large number. From a 

technical point of view, it follows that, if more 

modes are added the result will be more accurate. 

The calculations can be reasonably done with the 

modern computer algebra systems such as Maple. 

We consider the determinant of a pentadiagonal 

matrix of the form: 

In the case of K4  periodic solution: 

1- The determinantal equation for the even 

solutions
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 (23) 

 

where  ,2

3

     ,...,5,4,3l   we assume 

that  0lja    if  ,2 jl   where  lja    is the 

element in the row  l    and column .j  

2- The determinantal equation for the odd 

solutions: 

 (24) 

 
K8  - Periodic solution 

 

Such solution can be expressed as a 4   periodic 

Fourier series, solution of the trigonometric form 

(20)
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Substituting from (25) in (20), yields in the same 

manner as before. 

 

1-The determinantal equation for the even solutions: 

 

  (26) 
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2- The determinantal equation for the odd solutions: 

 (27) 

 

The stability picture 

 

Fig. 2 shows the boundary surfaces of the four 

types in (23),(24),(26),(27), in the 3D-space of 

parameters ),,(  from two different eye 

positions.  

It is readily seen that the growth of the 

gyrostatic moment of the rotor (proportional to 

the parameter  ) has the effect of pressing the 

zones of stability and instability towards the left 

face  0   of the admissible region R  , while 

new zones enter this region through the right face  

.4  This conclusion may be augmented by 

considering equation (20) on the bottom face  

0   of the region  R  . It takes the form 

.0)
2
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3
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 


du

d                    (28) 

As shown in Fig. 3, this face is divided by the 

curves
2

2

2

2
1 )()( n   ( n  integer) into 

separate zones of stability, i.e. we have a 

countable set of different stability zones, no 

instability zone is present. For small values of  

0 ,  an instability zone appears near to each of 

those curves, which splits on the neighbouring 

sections to two curves carrying odd or even 

solutions. 

 

   
Fig. 2 a: full picture. b: full picture from a different eye position 

 

As seen from Fig. 2 and 3, the stability zones 

begin wide and cover all the bottom face and end 

at the top as narrow wedges. The instability 

zones, conversely, begin as narrow wedges at the 

bottom and grow to include all the top area. From 

Fig. 3 and 4 we note that a single instability zone 

disappears as    increases. That is the small 

zone at the upper left front corner of  R  . To 

follow this up we consider the equation (19) near 

the face .0   On that face, the only periodic 

solution of (19) is the constant solution. This 

indicates that this line may form, or it is a part of, 

a boundary between two of the stability and 

instability zones. One solution of (19) must be 

4K-periodic on this boundary. We try an 

expansion for this solution in the neighbourhood 

of the section  0  : 
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Fig. 3 The bottom face v = 0 

 

...
2

2
103

 yyy   

Substituting in (19) we get for the first two 

powers of  :   

.0)
2

1
( ,0 222

010
  usnyyy   

The periodic solution of the first equation is  

.
0

consty   and the condition for K4  - 

periodicity of the solution of the second one is:  

,0)
2

1
( 2224

0
 duusnK   

or equivalently, 

.0)()()
2

1
( 2   EK                  (29) 

Where )(K  is the complete elliptic integral 

of the first kind with modulus )(,  E   is the 

complete elliptic integral of the second kind with 

modulus  .   The last equation has a real 

solution  )(   on the interval  ]1707.0,0[
2

1    

with  9089.0)0(    and  .1)(
2

1    This 

solution is shown in Fig. 4. The above mentioned 

little (pocket) of instability completely disappears 

by     reaching  .
2

1   

On the front face ,0  equation (19) takes 

the form of Lame equation and the stability zones 

were found in [12]. They have the shape shown 

in Fig. 5-a. Three zones of stability and four 

zones of instability of Lame's equation are 

present, separated by curves carrying K2 and 

K4 -periodic even and odd solutions. For 0 , 

equation (19) is  K4  -periodic and the four types 

of solutions are deformed into even and odd K4  

-periodic solutions. The second primitive 

periodic solutions of (19) are odd and even K8  -

periodic solutions. In general those solutions 

exist on pairs of different surfaces, which meet 

the face  ,0   each pair at a single line lying in 

the middle of one of the stability zones and 

known to carry simultaneously even and odd K8  

-periodic solutions of Lame equation [31]
 1

. The 

last lines are represented by solid lines in Fig. 5-

a. For special values of 

)1,7.0,5.0,3.0,2.0,1.0(    the zones of 

stability are shown in Fig. 5-b,c, d,e,f,g. 

 
1
For  

2
1,0     equation (19) reduces to 

Lame equation  ,0)31(
3

2

3

2
222

4
1  


usn

du

d
  

whose general solution is 8K-periodic (see 

[29] Chapter 23, exercise 18).  
 

 
Fig. 4 The left face  0  
 

For  4  the zones of stability are shown in 

Fig. 6.  
 

Numerical study 

 

The linear periodic equation (20) may be written 

as: 

,0                           (30) 

where the dash refers to the derivative with 

respect to     and   ,    have the form 

,
)sin1(

cossin

22

2











    (31) 

       .
)sin1(

)cos22cos)1((
 

22

2
3

2

2
1











H (32) 

The study of stability of the three-term 

equation (30) is quite involved. The theory of 

periodic differential equations is much more 

developed for Hill's equation. The substitution 
,    y  

,4
1

)2sin 21(
 

2
1 








 d

e     (33) 

Transforms the periodic equation (30) to Hill's 

equation 

,0)(
2

2

 yQ
d

yd




       (34) 

).
24

(
2 




Q  
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Let  
21

, yy   be a fundamental set of solution 

of (34) satisfying the conditions 

.1)0(                            0)0(

,0)0(                            1)0(

21

21





 yy

yy
 (35) 

The zones of stability of the zero solution of 

(34) are characterized by the condition [30] 

.2) 2( )2(
21

   yy       (36) 

They are separated from instability zones by 

the boundaries 

.2) 2() 2(
21

   yy         (37) 

on which at least one solution is primitive 

periodic. Generally speaking, the second solution 

of (34) on (36) is not periodic due to the presence 

of a secular term, leading to instability of the zero 

solutions of (34). However, the second solution is 

also periodic on the intersection of two 

boundaries. In this case the zero solution is 

stable. Now, we transform the stability condition 

(36) to a condition on the solution of equation 

(30). Denote by  
21

,   the solution of (30) 

corresponding to the fundamental solutions of 

(34), i.e. 

.     ,   
2211

yy      (38) 

We get the initial conditions 

 ).0()0(    ,            0)0(

, 0)0(    ,       )0()0(

22

11












 (39) 

The stability condition (36) takes the final 

form 

.2)) 2() 2((
21

          (40) 

 

   
a: the face  0   

 

b:  1.0  c:  2.0   

 

   
d:  3.0    e:  5.0    f:  7.0    

  
g:  1    

Fig. 5 Sections of stability zones at different levels of the gyrostatic parameter   

 

Fig. 7 represents the numerical results of 

stability analysis for special values of
              

( )1,0 . Black points represent mean stability 

of the corresponding vibration according to 
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numerical calculation; while points 

corresponding to instability are left blank 

completely agree with the analytically calculated 

boundaries drawn in solid lines. 

 

 
Fig. 6 The right face 4  

 

Fig. 8 shows the numerical results of stability 

analysis for special values of    (v = 0.3, 0.5, 

0.7, 0.9, 0.95, 0.97, 0.99). Points represent points 

of stability according to numerical calculations. 

Points corresponding to instability are left blank. 

This completely agrees with the analytical result 

drawn in solid lines. Fig. (8-f) shows the 

numerical results of stability analysis for  

99.0   calculated from the determinants with 

35 rows and columns, Fig. (8-h) for  99.0   

calculated from the determinants with 40 rows 

and columns. We note that for  99.0   Fig. (8-

g) gives a good analytical approximation, in 

completely agreement with the numerical one. 

a  b   
Fig. 7 Sections of stability zones at different levels of the gyrostatic parameter   analytical and numerical. a: 

the front face   = 0 b:   = 1 

 

   
a: v = 0.3  b: v = 0.5 c: v = 0.7 

   
d: v = 0.9  e: v = 0.95 f: v = 0.97 

   
g: v = 0.99 h: v = 0.99 
Fig. 8 Sections of stability zones at different levels of the modulus v of the elliptic function 
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The overall conclusion may draw of Fig. 8 is 

that with the increase of the modulus  )1,0[   

instability zones spread from right and from 

below. By     reaching  99.0   instability prevails 

for all bodies with oblate inertia spheroid, while 

several (different) stability zones still exist for the 

body with prolate inertia spheroid in the upper 

left corner of Fig. (8-h). 

 

 

Conclusion 

 

It is well known that the addition of the rotor 

along the axis of symmetry of a rigid body can 

stabilize if given suitable angular velocity the 

unstable (upper) position of equilibrium. Rotors 

are used as stabilizing factor in several situations 

in space dynamics. It is of great interest to study 

the effect of the added rotor on the stability of 

some simple periodic motions. 

The orbital stability of the plane (pendulum-like) 

vibrations of a rigid body about a fixed point is 

analyzed. The variation equation is a form of 

Hill's equation  

 

,0
3

)222)1(2

2

12(
2

3
2

 


cnuusn

du

d

 

 which generalizes Lame's equation by the 

presence of one additional parameter    

depending on the gyrostat moment. This equation 

is not treated in the literature to any extent. 

Applying Floquet's theory to solve the 

periodic eigen-value problem for this equation 

we determine the boundaries of stability and 

instability zones in the admissible region of the 

3D space  }.0,10,40:,,{     

Analytically calculated boundary surfaces are 

plotted in 3 D space and various plane sections 

are compared with numerically computed 

stability zones. Analytical and numerical results 

show good agreement. 

It is noted that with the increase of the 

gyrostatic moment stability and instability zones 

are pressed to left and new zones appear from the 

right side  .4  As  increases, instability 

prevails for bodies with oblate inertia spheroid. 
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 الملخص العربى

 

 

 استقرار الحركة التذبذبية لبندول ثقيل حول نقطة ثابتة 

 
حمد يحيى

1
، إيمان الحديدى

2
 

1
 المنصورةجامعة  –العلومكلية  –الرياضياتقسم  
2
 دمياطجامعة  –العلومكلية  –الرياضياتقسم  

 

ثقيل حول نقطة ثابتة في حالة الحركة  تيهتم البحث بدراسة استقرار الحركات البندولية لجيروستا

بواسون لحركة الجسم المتماسك نعتمد علي معادلة تفاضلية –التذبذبية. وبدلا من استخدام معادلات أويلر

من الرتبة الثانية في متغيرين 
),( 31 

. وبالحصول علي 1891و التي قام باستنتاجها أ.د. يحيي في عام  

المعادلة في صورة تكون فيها المعاملات دوال دورية فيتم تطبيق نظرية فلوكي وتختزل دراسة الاستقرار 

الي تعيين الحلول الدورية وفئات النقاط المقابلة لها في فراغ البارامترات  سم الفراغ و التي تق ,,

الي مناطق استقرار ومناطق عدم استقرار. ويتم تحديد السطوح التي تقع عليها الحلول في كل منطقة، 

وهي الحدود الفاصلة بين مناطق الاستقرار وعدم الاستقرار. ويتم التأكد بطريقة عددية من صحة النتائج 

 وترسم صورة كاملة للمناطق في فراغ البارامترات.
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