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Abstract  

The influence of porosity and magnetic field on a mathematical model of functionally graded 

piezoelectric (FGP) hollow structures (cylinder and sphere) in a hygrothermal environment is 

presented using a semi-analytical technique. The mathematical model is under the effects of many 

forces, in addition to a magnetic field, which is still a challenging study. Loading is a collection of 

mechanical pressure on the inner and outer surface, magnetic field, hygrothermal influences, and 

change of electric potentials between external and internal surfaces. The whole material properties 

are supposed to be a polynomial function of radius. Numerical results discuss four different 

boundary conditions for each model of mechanical pressure and electric field subject to the influence 

of temperature, humidity, and magnetic field. To check the numerical results, the results are 

compared between functionally graded porous and non-porous hollow structures. In the end, 

numerical outcomes clarified the influence of the porosity factor in the mathematical models and its 

importance in mechanical engineering and modern technology. 

Keywords: Porous material; Functionally graded material; Hygrothermal influence; Semi-analytical 

technique; Piezoelectric effect; Magnetic field. 

 

Introduction 

A porous environment or a porous material is a 

substance containing holes. A porous material 

is described by porosity. Other properties of the 

medium (permeability, resistance, electric 

conductivity) can be obtained from the 

attributes of its constituents. A lot of natural 

materials such as rocks and soil (petroleum, 

aquifers), biological tissues (wood, bones), and 

manufactured materials (ceramics, cement) can 

be treated as porous materials. A lot of their 

properties can only be explained by considering 

them to be porous materials. The hypothesis of 

porous material is applied in many fields of 

applied science and mechanical engineering.  

Porous functionally graded materials are porous 

structures with porosity gradients distributed 

over volume (Zhang and Wang, 2017). They 

have many uses in shipbuilding, the science of 

biomedical, dental medical implants, the 

aerospace industry, and other industries. For 
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porous functionally graded material and their 

relationship with moisture and temperature, 

Tahir et al. (2021) investigated wave 

propagation of porous FG sandwich plate in a 

hygrothermal environment, six different 

porosity models are studied to show the 

porosities distribution operator. She et al. 

(2019) used the nonlocal strain gradient theory 

in the wave propagation of nanotubes to clarify 

the influences of porosities and hygro-thermal 

changes. Singh and Harsha (2021) used the 

sigmoid function to study the porosity effect on 

vibration and buckling for sandwich plates 

reinforced with various boundary conditions at 

the edges. The solution technique was applied 

for six of 21 boundary conditions. A refined 

quasi-3D shear deformation theory for bending, 

buckling and free vibration analyses of FG 

porous beam with two different porosity 

distributions resting on an elastic foundation is 

studied by Fahsi et al. (2019). Penna et al. 

(2021) presented the bending response of FG 

porous Bernoulli-Euler nano-beams under 

hygro-thermo-mechanical force. Nikrad et al. 

(2021) displayed FG porous curved beams with 

different cases of porosity by using the first-

order shear deformation theory with the 

nonlinear Green strains. Moreover, a lot of 

researchers discuss the porosity properties of 

functionally graded materials. 

Different articles about piezoelectric porous 

functionally graded shapes are studied. 

Jankowski et al. (2021) explained piezoelectric 

loading on bifurcation buckling of porous FGM 

nanobeam based on a higher-order nonlocal 

elasticity and strain gradient theory in 

coincidence with Reddy's third-order shear 

deformation beam theory. Zhao et al. (2020) 

used Euler-Bernoulli beam and strain gradient 

theories to explore the bending and vibration of 

FG porous flexoelectric nanobeam. Alghanmi 

and Zenkour (2021) display the analysis of 

static bending of porous FG sheets joined to a 

piezoelectric fiber-reinforced composite layer. 

The sheet is exposed to sinusoidal mechanical 

and electrical force. Ghobadi et al. (2021) used 

the modified flexoelectric theory to study the 

effect of porosity on the diverse distribution of 

the static and nonlinear dynamic responses of a 

sandwich FG nanostructure with thermo-

electro-elastic coupling. Tantawy and Zenkour 

(2022) presented the hygrothermal influence on 

FGP hollow porous spheres with the effect of 

mechanical and electrical loading. 

Several types of research are still concerned 

with the piezoelectric functionally graded 

material and different loading on it. Allam et al. 

(2018) obtained a semi-analytical technique for 

an exponentially graded piezoelectric hollow 

sphere. The loading on a sphere is electric 

potentials, electric displacement, magneto-

thermo-elasticity, and hygrothermal effect to 

explain the specific effects of the material 

gradation in modern technology. Arefi and 

Zenkour (2017) used Eringen's nonlocal theory 

with piezomagnetic layers affected by electric 

and magnetic potentials resting on a two-

parameter foundation to study. Further research 

papers are created for functionally graded 

materials, such as Refs. (Zenkour and Aljadani, 

2020; Sobhy and Zenkour, 2019; Zenkour and 

Alghanmi, 2021; Allam et al., 2016; Dai et al., 

2012; Arani et al., 2012) to clarify the effect of 

FGMs on some particular applications. 

This paper is interested in the magneto 

hygrothermal actions on porous functionally 

graded piezoelectric hollow structures (cylinder 

and sphere). The material characteristic for 

porous hollow structures are varying through 

the radius thickness by the power functions 

formula. The mechanical boundary conditions 

on the porous structures are subjected to various 

sets of internal and external pressures. The 

differential equations are solved in general by 

using a semi-analytical technique to obtain the 

complete solution of the model. Several 

effective cases are studied to illustrate the effect 

and importance of the porosity factor and 

magnetic field on a functionally graded hollow 

structure in a hygrothermal environment. The 

results are collected for future studies and 

comparing the results for stresses, 

displacement, and electric potential between 

perfect FGPM and porous FGPM. Finally, the 

influence of various boundary conditions for 

four sets in every structure is verified. 

Mathematical description of porous hollow 

FGP structures 

This paper pursues to illustrate the effect of a 

combination of hygrothermal distribution and 

mechanical loading on a porous FG boundless 

long and axisymmetric hollow cylinder and 

symmetric a porous FG hollow sphere. 

Consider the hollow structures have perfect 

conductivity and are placed in a stable magnetic 

field. The geometry of the model is cylindrical 

coordinates (𝑟, 𝜃, 𝑧) and spherical coordinates 
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(𝑟, 𝜃, 𝜑). The porous (FGP) hollow structures 

are composed of PZT-4 on the inner surface and 

Cadmium selenide on the outer one. Table 1 

presented the material properties of the model. 

Table 1. Mechanical and electrical constants for 

PZT-4 and Cadmium selenide. 

PZT-4 Cadmium selenide 

𝑐𝑟𝑟
(𝑎) = 115 × 109 (Pa) 𝑐𝑟𝑟

(𝑏) = 83.6 × 109 (Pa) 

𝑐𝑟𝜃
(𝑎) = 74.3 × 109 (Pa) 𝑐𝑟𝜃

(𝑏) = 39.3 × 109 (Pa) 

𝑐𝜃𝜑
(𝑎) = 77.8 × 109 (Pa) 𝑐𝜃𝜑

(𝑏) = 45.2 × 109 (Pa) 

𝑐𝜃𝜃
(𝑎) = 139 × 109 (Pa) 𝑐𝜃𝜃

(𝑏) = 74.1 × 109 (Pa) 

𝑒𝑟𝑟
(𝑎) = 15.1 (Cm−2) 𝑒𝑟𝑟

(𝑏) = 0.347 (Cm−2) 

𝑒𝑟𝜃
(𝑎) = −5.2 (Cm−2) 𝑒𝑟𝜃

(𝑏) = 0.16 (Cm−2) 

𝜀𝑟𝑟
(𝑎)

= 3.87 × 10−9 (C2K−1m2) 
𝜀𝑟𝑟
(𝑏)

= 9.03 × 10−11 (C2K−1m2) 

𝑝11
(𝑎)

= −2.5 × 10−5 (CK−1m−2) 
𝑝11
(𝑏)

= −2.94 × 10−6 (CK−1m−2) 

𝛼𝑟
(𝑎) = 2 × 10−5 (K−1) 𝛼𝑟

(𝑏) = 2.458 × 10−6 (K−1) 

𝛼𝜃
(𝑎) = 2 × 10−6 (K−1) 𝛼𝜃

(𝑏) = 4.396 × 10−6 (K−1) 

𝜂𝑟
(𝑎)

= 0.03 × 𝑐𝑟𝑟
(𝑎) (m3kg−1Pa) 

𝜂𝑟
(𝑏) = 0.03 × 𝑐𝑟𝑟

(𝑏) (m3kg−1Pa) 

𝜂𝜃
(𝑎) = 0 (m3kg−1Pa) 𝜂𝜃

(𝑏) = 0 (m3kg−1Pa) 

𝜇(𝑎) = 4𝜋 × 10−7(Hm−1) 𝜇(𝑏) = 6.15 × 10−5(Hm−1) 

The effective material properties of FGP 

structures with porosity are expressed as a 

power function of radius 𝑃(𝑟) in the form 

P(r) = (p(b) − p(a)) (
r−a

b−a
)
l
+ p(a) −

β

2
(p(a) +

p(b)), (1) 

where 𝑝𝑎 and 𝑝𝑏 are the properties of internal 

and external surfaces; 𝑎 and 𝑏 are the inner and 

outer radius, respectively; 𝑙 ≥ 0 is the volume 

fraction exponent (𝑙 is a grading index), and 0 ≤
𝛽 ≤ 1 is a porosity volume parameter, for non-

porous shape 𝛽 = 0.  

The porous hollow structures loading is a 

collection of moisture diffusion 𝐶(𝑟), 
temperature conduction 𝑇(𝑟) and electric 

potential 𝜓(𝑟) placed in a stable magnetic field. 

The constitutive equations for the porous FGP 

structures in the radial direction are expressed 

as (Sinha, 1962; Dai and Wang, 2005): 

{
𝜎𝑟
𝜎𝜃
} = [

𝑐𝑟𝑟 𝑛𝑐𝑟𝜃 𝑒𝑟𝑟
𝑐𝑟𝜃 𝑐𝑛 𝑒𝑟𝜃

]

{
 
 

 
 
d𝑢

d𝑟
𝑢

𝑟
d𝜓

d𝑟}
 
 

 
 

−

{
𝜆𝑟
𝜆𝜃
} 𝑇(𝑟) − {

𝜂𝑟
𝜂𝜃
} 𝐶(𝑟), (2) 

𝐷𝑟 = 𝑒𝑟𝑟
d𝑢

d𝑟
+ 𝑛𝑒𝑟𝜃

𝑢

𝑟
− 𝜀𝑟𝑟

d𝜓

d𝑟
+ 𝑝11𝑇(𝑟) +

𝑝22𝐶(𝑟), (3) 

where 𝑛 is a unified parameter, 𝑛 = 1 for 

cylindrical coordinates, and 𝑛 = 2 for spherical 

coordinates, respectively. Also, 𝑐1 = 𝑐𝜃𝜃 and 

𝑐2 = 𝑐𝜃𝜃 + 𝑐𝜃𝜑. Furthermore, 𝑐𝑖𝑗 (𝑖, 𝑗 = 𝑟, 𝜃, 𝑧) 

for cylinder, 𝑐𝑖𝑗 (𝑖, 𝑗 = 𝑟, 𝜃, 𝜑) for sphere, 𝑒𝑟𝜃 

(𝑗 = 𝑟, 𝜃), 𝜀𝑟𝑟, 𝑝11, 𝑝22 and 𝜂𝑖 (𝑖 = 𝑟, 𝜃) are 

elastic, piezoelectric, dielectric, pyroelectric, 

hygroelectric and moisture expansion 

constants, while 𝜆𝑖 related to the material 

coefficients in the forms 

{
𝜆𝑟
𝜆𝜃
} = [

𝑐𝑟𝑟 𝑛𝑐𝑟𝜃
𝑐𝑟𝜃 𝑐𝑛

] {
𝛼𝑟
𝛼𝜃
}, (4) 

where 𝛼𝑖 are the thermal expansion coefficients.  

Consider the magnetic permeability 𝜇(𝑟) of 

porous FGP hollow structures are the same as 

the magnetic permeability of its medium (Ezzat, 

1997). The characteristic properties of the 

medium are non-ferromagnetic and non-

ferroelectric neglecting the Thompson effect. 

Maxwell's equations of electrodynamics written 

(Kraus, 1984) 

𝐽 = ∇ × ℎ, ∇ × 𝑒 = −𝜇
𝜕ℎ

𝜕𝑡
,

∇ ∙ ℎ = 0, 𝑒 = −𝜇 (
𝜕𝑢

𝜕𝑡
× 𝐻) ,

ℎ = ∇ × (𝑢 × 𝐻) }
 
 

 
 

, 

 (5) 

The vector of the initial magnetic 𝐻 ≡ (0,0,𝐻) 
and displacement field 𝑢 ≡ (𝑢, 0,0) while ℎ ≡
(0,0, ℎ), substitute in Eq. (5)  

𝑒 = −𝜇(𝑟) (0, 𝐻
𝜕𝑢

𝜕𝑡
, 0)

𝐽 = (0,−
𝜕ℎ

𝜕𝑟
, 0)

ℎ = −𝐻 (
𝜕𝑢

𝜕𝑟
+
2𝑢

𝑟
) }

 
 

 
 

, (6) 

where 𝐻 in Eq. (6) represent 𝐻𝑧 in cylindrical 

coordinates and 𝐻𝜑 in spherical coordinates. As 

a rule, suppose that 𝑐𝑖𝑗
𝑛 , 𝑒𝑟𝑗, 𝛼𝑖, 𝜂𝑖, 𝜇, 𝑝11  and 

𝑝22 of the porous structures tracking power 

graded function in Eq. (1). 

Uncoupled hygrothermal distribution 

The uncoupled equations of temperature and 

moisture are independent. Fourier heat equation 

and Fickian moisture diffusion along the radial 

direction can be written in the form (Kraus, 

1984; Sih et al., 1986): 
1

𝑟𝑛
d

d𝑟
(𝑘𝑇𝑟

𝑛 d𝑇(𝑟)

d𝑟
) = 0,

1

𝑟𝑛
d

d𝑟
(𝑘𝐶𝑟

𝑛 d𝐶(𝑟)

d𝑟
) = 0,

} (7) 

where 𝑘𝑇, 𝑘𝐶 is the mean of heat conductivity 

constant and the mean of moisture diffusivity 

constant, respectively. 

The boundary conditions for temperature and 

moisture in both cylindrical and spherical 

coordinates are expressed as 
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𝑇(𝑛)(𝑟)|
𝑟=𝑎

= 𝑇0,           𝑇
(𝑛)(𝑟)|

𝑟=𝑏
= 𝑇1,

𝐶(𝑛)(𝑟)|
𝑟=𝑎

= 0,           𝐶(𝑛)(𝑟)|
𝑟=𝑏

= 𝐶0,
}  

  (8) 
where 𝑇0 is reference primary temperature, 𝐶0 

is the primary moisture concentration and 𝑇1 is 

the value of temperature at 𝑟 = 𝑏. 

By integrating Eqs. (7) twice and applying the 

boundary conditions (8), one can solve the 

equations as 

𝑇(1)(𝑟) = 𝑇0 +
𝑇1−𝑇0

ln(
𝑏

𝑎
)
ln (

𝑟

𝑎
) ,

𝐶(1)(𝑟) = 𝐶0
ln(

𝑟

𝑎
)

ln(
𝑏

𝑎
)
ln (

𝑟

𝑎
) ,

𝑇(2)(𝑟) =
𝑏𝑇0

𝑏−𝑎
[
𝑇1

𝑇0
−
𝑎

𝑏
+
𝑎

𝑟
(1 −

𝑇1

𝑇0
)] ,

𝐶(2)(𝑟) =
𝑏𝐶0

𝑏−𝑎
(1 −

𝑎

𝑟
) .

 (9) 

Equilibrium and Maxwell equations 

The equilibrium and electric displacement 

(Maxwell) equations  of FGP porous hollow 

structures in one dimension by ignoring electric 

charge density and body force are (Paria, 1967): 
d𝜎𝑟

d𝑟
+
𝑛(𝜎𝑟−𝜎𝜃)

𝑟
+ 𝐹 = 0, (10) 

d𝐷𝑟

d𝑟
+
𝑛𝐷𝑟

𝑟
= 0, (11) 

where 𝐹 represents Lorentz force. It can express 

as 

𝐹 = 𝜇(𝑟) (𝐽 × 𝐻) = 𝐻2
𝜕

𝜕𝑟
(𝜇

𝑑𝑢

𝑑𝑟
+ 𝜇

𝑛𝑢

𝑟
). (12) 

Elastic solution procedure for the porous 

structures 

The solution technique for porous FGP hollow 

structures is obtained by solving the uncoupled 

equations for  temperature and moisture first, 

the next step solves the equilibrium and electric 

displacement equations with mechanical and 

electric conditions. 

Temperature distribution and moisture 

concentration equations are having been shown 

in Eqs. (9), and the electrostatic charge solution 

in Eq. (11) is expressed in the form 

𝐷𝑟 =
𝐴1

𝑟𝑛
, (13) 

where 𝐴1 is constant of integration. Then, Eqs. 

(3) and (13) with a graded power function in Eq. 

(1), yields 
d𝜓

d𝑟
=

1

𝜀𝑟𝑟
(𝑒𝑟𝑟

d𝑢

d𝑟
+ 𝑛𝑒𝑟𝜃

𝑢

𝑟
+ 𝑝11𝑇(𝑟) +

𝑝22𝐶(𝑟) −
𝐴1

𝑟𝑛
). (14) 

By substituting in equilibrium equation Eq. (10) 

and collecting the terms of radial displacement 

derivatives in a different order, temperature and 

moisture can be summarized as 

 

d2𝑢

d𝑟2
+ (

d𝑚11
d𝑟

+𝐻2
𝑑𝜇

𝑑𝑟

𝑚11+𝜇𝐻
2 +

𝑛

𝑟
)
d𝑢

d𝑟
+ 𝑛(

d𝑚12
d𝑟

+𝐻2
d𝜇

d𝑟

𝑟(𝑚11+𝜇𝐻
2)
+
(𝑛−1)𝑚12−𝑚22−𝜇𝐻

2

𝑟2(𝑚11+𝜇𝐻
2)

)𝑢 +
𝑚41

𝑚11+𝜇𝐻
2

d𝐶

d𝑟
+ (

d𝑚41
d𝑟

𝑚11+𝜇𝐻
2 +

𝑛(𝑚41−𝑚42)

𝑟(𝑚11+𝜇𝐻
2)
)𝐶(𝑟) +

𝑚31

𝑚11+𝜇𝐻
2

d𝑇

d𝑟
 + (

d𝑚31
d𝑟

𝑚11+𝜇𝐻
2 +

𝑛(𝑚31−𝑚32)

𝑟(𝑚11+𝜇𝐻
2)
)𝑇(𝑟) − (

d𝑚51
d𝑟

𝑟𝑛(𝑚11+𝜇𝐻
2)
−

n𝑚52

𝑟𝑛+1(𝑚11+𝜇𝐻
2)
)𝐴1 = 0, (15) 

where 𝑚𝑖𝑗 are functions of 𝑟 

𝑚11 = 𝑐𝑟𝑟 +
𝑒𝑟𝑟
2

𝜀𝑟𝑟
, 𝑚12 = 𝑐𝑟𝜃 +

𝑒𝑟𝑟𝑒𝑟𝜃

𝜀𝑟𝑟
,

𝑚22 = 𝑐𝑛 + 𝑛
𝑒𝑟𝜃
2

𝜀𝑟𝑟
, 𝑚31 =

𝑒𝑟𝑟𝑝11

𝜀𝑟𝑟
− 𝜆𝑟,

𝑚32 =
𝑒𝑟𝜃𝑝11

𝜀𝑟𝑟
− 𝜆𝜃, 𝑚41 =

𝑒𝑟𝑟𝑝22

𝜀𝑟𝑟
− 𝜂𝑟 ,

𝑚42 =
𝑒𝑟𝜃𝑝22

𝜀𝑟𝑟
− 𝜂𝜃, 𝑚51 =

𝑒𝑟𝑟

𝜀𝑟𝑟
,

𝑚52 =
𝑒𝑟𝜃

𝜀𝑟𝑟
, }

 
 
 
 

 
 
 
 

.

 (16) 

To complete the solution of the problem after 

getting the general solution of radial 

displacement in Eq. (15), substitute in Eq. (14) 

and integrate with an additional constant of 

integration 𝐴2 to obtain the electric potential 

𝜓(𝑟). 

Now, the boundary conditions on the porous 

hollow structures are divided into mechanical 

and electric boundary conditions 

Mechanical boundary conditions   

𝜎𝑟|𝑟=𝑎 = −𝑃1,     𝜎𝑟|𝑟=𝑏 = −𝑃2. 

Electric boundary conditions   

𝜓(𝑟)|𝑟=𝑎 = 𝜓1,     𝜓(𝑟)|𝑟=𝑏 = 𝜓2. 

where 𝑃1, 𝑃2 are the pressures on internal and 

external radii and 𝜓1, 𝜓2 are the value of electric 

potentials on the inner and outer radius. 

To finish the solution of Eq. (15) as a function 

of 𝑟 is too difficult. So, it is suitable to employ 

a semi-analytical technique to obtain the 

solution of the differential equation (15). In this 

technique, the radial range is split into some 

virtual sub-domains with a thickness 𝑠(𝑘), as 
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presented in Fig. 1. Evaluating the factors of Eq. 

(15) at 𝑟 = 𝑟(𝑘), the mean radius of the kth 

division, and using them as suitable variable 

coefficients in Eq. (15), that is 

 
d2𝑢(𝑘)

d𝑟2
+𝑁1

(𝑘) d𝑢
(𝑘)

d𝑟
+𝑁2

(𝑘)
𝑢(𝑘) +𝑁3

(𝑘)
= 0,

 (17) 

where 

𝑁1
(𝑘)

=
d𝑚11
d𝑟

+𝐻2
𝑑𝜇

𝑑𝑟

𝑚11+𝜇𝐻
2 |

𝑟=𝑟(𝑘)
+

𝑛

𝑟(𝑘)
,  

𝑁2
(𝑘)

= n(
d𝑚12
d𝑟

+𝐻2
𝑑𝜇

𝑑𝑟

𝑟(𝑚11+𝜇𝐻
2)
|
𝑟=𝑟(𝑘)

+
(𝑛−1)𝑚12−𝑚22−𝜇𝐻

2

𝑟2(𝑚11+𝜇𝐻
2)

|
𝑟=𝑟(𝑘)

),  

𝑁3
(𝑘)

=
𝑚41

𝑚11+𝜇𝐻
2|
𝑟=𝑟(𝑘)

d𝐶

d𝑟
|
𝑟=𝑟(𝑘)

+ (
d𝑚41
d𝑟

𝑚11+𝜇𝐻
2 |
𝑟=𝑟(𝑘)

+
𝑛(𝑚41−𝑚42)

𝑟(𝑚11+𝜇𝐻
2)
|
𝑟=𝑟(𝑘)

)𝐶(𝑟(𝑘))  

  +
𝑚31

𝑚11+𝜇𝐻
2|
𝑟=𝑟(𝑘)

d𝑇

d𝑟
|
𝑟=𝑟(𝑘)

+ (
d𝑚31
d𝑟

𝑚11+𝜇𝐻
2 |
𝑟=𝑟(𝑘)

+
𝑛(𝑚31−𝑚32)

𝑟(𝑚11+𝜇𝐻
2)
|
𝑟=𝑟(𝑘)

)𝑇(𝑟(𝑘))  

−(
d𝑚51
d𝑟

𝑟𝑛(𝑚11+𝜇𝐻
2)
|
𝑟=𝑟(𝑘)

−
𝑛𝑚52

𝑟𝑛+1(𝑚11+𝜇𝐻
2)
|
𝑟=𝑟(𝑘)

)𝐴1
(𝑘)
, 

  

while 𝑚𝑖𝑗 are functions of 𝑟(𝑘). By using the up 

method, Eq. (15) with varying coefficients is 

changed into a set of m differential equations 

with constant coefficients and 𝑚 is the number 

of virtual divisions. Now, we can acquire the 

displacement by solving Eq. (17) as a function 

of 𝑟 in the form 

𝑢(𝑘) = 𝐵1
(𝑘)
𝑒𝛿1𝑟 +𝐵2

(𝑘)
𝑒𝛿2𝑟 −

𝑁3
(𝑘)

𝑁2
(k), (18) 

where 𝛿1, 𝛿2 are the roots of the equation 𝛿2 +

𝑁1
(𝑘)𝛿 + 𝑁2

(𝑘) = 0, and B1
(k)

 and B2
(k)

 are 

differential equation constants for kth division. 

The solution of Eq. (17) is valid for  

𝑟(𝑘) −
𝑠(𝑘)

2
≤ 𝑟 ≤ 𝑟(𝑘) +

𝑠(𝑘)

2
,  

where 𝑟(𝑘) and 𝑠(𝑘) are the mean radii and the 

radial thickness of the kth division, 

respectively. Constants B1
(k)

 and B2
(k)

 specified 

from the continuity boundary condition among 

every two neighboring divisions. So, the 

continuity boundary conditions are imposed at 

the interfaces of neighboring divisions in the 

form: 

𝑢(𝑘)|
𝑟=𝑟(𝑘)+

𝑆(𝑘)

2

= 𝑢(𝑘+1)|
𝑟=𝑟(𝑘+1)−

𝑆(𝑘+1)

2

,

𝜎𝑟
(𝑘)
|
𝑟=𝑟(𝑘)+

𝑆(𝑘)

2

= 𝜎𝑟
(𝑘+1)

|
𝑟=𝑟(𝑘+1)−

𝑆(𝑘+1)

2

,

𝜎𝜃
(𝑘)
|
𝑟=𝑟(𝑘)+

𝑆(𝑘)

2

= 𝜎𝜃
(𝑘+1)

|
𝑟=𝑟(𝑘+1)−

𝑆(𝑘+1)

2

,

𝜓(𝑘)|
𝑟=𝑟(𝑘)+

𝑆(𝑘)

2

= 𝜓(𝑘+1)|
𝑟=𝑟(𝑘+1)−

𝑆(𝑘+1)

2

.

 (19) 

By solving the continuity equations (19) with 

mechanical and electric boundary conditions 

together, one obtains a system of linear 

equations in 𝐴1
(𝑘)

, 𝐴2
(𝑘)

, 𝐵1
(𝑘)

, 𝐵2
(𝑘)

, (𝑘 =
1,2,… . ,𝑚). Solving this system to determine 

the constants and to get the radial displacement 

(18) in each subdomain. Rising the number of 

sub-domains improves the accuracy of the 

results. 

Numerical examination 

A numerical investigation is presented in Figs. 

2-11 and Tables 2-9 to display the effect of 

porosity, moisture, temperature, and 

mechanical pressures on a porous piezoelectric 

functionally graded hollow structure (cylinder 

and sphere). The investigation is carried out for 

four different cases of boundary conditions for 

cylinder and sphere. In addition, suppose the 

inner and outer radius of porous structures are 

𝑎 = 0.2 (m) and 𝑏 = 1 (m). 

 

Figure 1. Dividing a radius range into several 

limited divisions. 

 
All figures plotted for dimensionless rules: 

𝑟̅ =
𝑟

𝑏
, 𝑢̅ =

𝑢

𝑏
× 102,

𝑇̅ =
𝑇(𝑟̅)

𝑇0
, 𝐶̅ =

𝐶(𝑟̅)

𝐶0
,

 

but, the dimensionless for stresses and electric 

potential will be changed for every case study. 

Consider PZT-4 and Cadmium selenide are the 

material of internal and external surfaces, 
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respectively. The value of the properties of the 

material is given in Table 1 (Ootao and 

Tanigawa, 2007; Ghorbanpour et al., 2012). 

The mechanical pressures and electric 

potentials boundary conditions are taken for a 

set of different formats in the following shape 

for a porous hollow (cylinder and sphere) 

sequentially: 

Case 1: 

 
𝑃1 = 0 (Pa), 𝑃2 = 0 (Pa),

𝜓1 = 0 (𝑊/𝐴), 𝜓2 = 0 (𝑊/𝐴).
  

Case 2:  

𝑃1 = 0 (Pa), 𝑃2 = 10
10 (Pa),

𝜓1 = 0 (𝑊/𝐴), 𝜓2 = 0 (𝑊/𝐴).
  

Case 3:  
𝑃1 = 0 (Pa), 𝑃2 = 0 (Pa),

𝜓1 = 10
8 (𝑊/𝐴), 𝜓2 = 0 (𝑊/𝐴),

 

Case 4:  

𝑃1 = 10
10 (Pa), 𝑃2 = 0 (Pa),

𝜓1 = 0 (𝑊/𝐴), 𝜓2 = 10
8(𝑊/𝐴).

 

 Numerical investigation for a porous hollow 

cylinder 

Figure 2 shows the temperature and humidity 

according to Eq. (9) in the case of 𝑛 = 1, which 

means the state of a porous hollow cylinder. 

Fig. (2a) describe the temperature behavior 

among the inner and outer surface of the 

cylinder. The temperature is equal to one at the 

inner surface compatible with the boundary 

condition and increasing along the radial 

direction. while Fig. (2b) presents the 

distribution of humidity as equal zero on the 

inner surface and equal one on the outer one to 

satisfy the boundary conditions. 

 

Figure 2. Temperature distribution and moisture condensation in FGP hollow cylinder. 
 

Case 1: In this case, suppose that the 

mechanical pressures on the inner and outer 

surfaces equal zero and the cylinder is insulated. 

The dimensionless stresses and electric 

potential take the image: 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {𝜎𝑟, 𝜎𝜃, 𝜓}. 
Table 2 examines the difference between radial 

displacement, radial stress, hoop stress, and 

electric potential in perfect and porous FGP 

hollow cylinders with several values of grading 

index 𝑙. The table comparison between the 

perfect cylinder (𝛽 = 0) and porous cylinder 
(𝛽 = 0.2) with various values of grading index 

𝑙 = 5, 10, 20. The displacement values, radial 

stress, and electric potential amount in a porous 

cylinder are less than perfect values at the same 

dimensionless radius except for 𝑙 = 20. The 

hoop stress is very sensitive to the porosity 

parameter 𝛽 with different values of grading 

index 𝑙 and dimensionless radius 𝑟. 

Figure 3 presents the case result. Radial and 

hoop stresses, electric potential, and radial 

displacement are shown in Fig. 3 with grading 

index value 𝑙 = 12 and different porosity factor 

values 𝛽. Figure 3(a) demonstrates the radial 

stress 𝜎̅𝑟 for various values of porosity factor 

(𝛽 = 0, 0.1, 0.2, 0.3). Noticed that, radial stress 

𝜎̅𝑟 decreasing from 𝑟 = 0.2 to 𝑟 = 0.3 and then 

increasing to 𝑟 = 0.9 and thereafter decreasing 

close to the external surface 𝑟 = 1 to verify the 

boundary condition. Radial stress 𝜎̅𝑟 for a 

perfect cylinder 𝛽 = 0 are intermediates of the 

porous cylinder along the radial direction. The 

hoop stress 𝜎̅𝜃 is displayed in Fig. 3(b) for a 

perfect and porous cylinder. The hoop stress 𝜎̅𝜃 

are rising along the radius direction. Hoop stress 

𝜎̅𝜃 for a perfect cylinder are intermediates the 

porous cylinder from 𝑟 = 0.2 to 𝑟 = 0.65 and 

then the perfect cylinder is greater than the 

identical ones of the porous cylinder. Figure 

3(c) demonstrates the electric potential for the 

cylinder with various values of the parameter 𝛽. 

The electric potential is increasing along the 

cylinder radius and then decreases near the 

external surface to accept the boundary 

condition. The electric potential perfect curve is 

intermediating the porous curves for 𝛽 = 0.2 
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and 𝛽 = 0.3 along the radius direction. The 

radial displacement is explained in Figure 3(d). 

Displacement is increased over the radius of the 

cylinder and the perfect curve is also amidst 

between 𝛽 = 0.2 and 𝛽 = 0.3 curves. 

 

 

Figure 3. Influence of porosity parameter on stresses, electric potential, and displacement without mechanical 

loads and insulated FGP cylinder. 

Case 2: For this case, there is only external 

pressure 𝑃2 applied on the outer radius and there 

is no existence of electric potential on it. While 

the inner surface is free of mechanical and 

electrical loads. The cylinder in this case is 

transacted as a sensor. The dimensionless has 

the form 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {
𝜎𝑟
𝑃2
,
𝜎𝜃
𝑃2
, 𝜓}. 

Table 2. Influence of porosity parameter without mechanical loads and insulated the FGP cylinder. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 -0.81709 -1. 1588 -1.4005 -1.1347 -1.4310 34.3381 

0.5 -0.47757 -0.71930 -0.88684 -0.66579 -0.89058 22.5822 

0.7 -0.11170 -0.30177 -0.43373 -0.21499 -0.40714 16.7232 

𝜎̅𝑟 

0.3 -0.048208 -0.088570 -0.11643 -0.066632 -0.098795 3.2403 

0.5 0.00612 -0.03733 -0.06697 -0.01492 -0.05200 3.2764 

0.7 0.06551 0.03714 0.01322 0.04717 0.01974 2.5932 

𝜎̅𝜃 

0.3 -0.24861 -0.33019 -0.38569 -0.26362 -0.33189 6.0008 

0.5 -0.032537 -0.061518 -0.079648 -0.031271 -0.061632 1.4176 

0.7 0.082183 0.073635 0.066493 0.082268 0.067483 0.18107 

𝜓̅ 

0.3 0.01501 -0.013184 -0.03461 -0.011163 -0.026925 3.220 

0.5 0.08268 -0.00792 -0.07528 0.00163 -0.05701 10.087 

0.7 0.21165 0.07228 -0.03283 0.08710 -0.00514 15.779 

The analysis of the case is shown in Table 3 and 

figure 4. Table 3 show the value of 

displacement, radial and hoop stresses, and 

electric potential for perfect and porous cylinder 

for the same value of radii and different value 

of grading index and porosity factor. It's clear 

that all value of displacement, stresses, and 

electric potentials in a perfect cylinder is greater 

than the value in a porous cylinder except the 

electric potential in a perfect cylinder is less 

than the porous cylinder in the case of 𝑙 = 20. 

Figure 4 shows the stresses, electric potential, 

and displacement in this case. Figure 4(a) 

illustrates the radial stress 𝜎̅𝑟 for a perfect and 

porous sensor cylinder. Radial stress decreases 

during the cylinder radius and satisfies the 

boundary condition. Notice that the perfect 

radial stress is less than the porous radial stress 

along the radius of the cylinder. While Figure 

4(b) explains the hoop stress crosses the radial 
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direction. the hoop stress is increasing along the 

cylinder radius. Notice that the perfect radial 

stress is less than the porous radial stress along 

the radius of the cylinder. The same as radial 

stress, the perfect hoop stress is less than the 

porous hoop stress along the radius of the 

cylinder. The electric potential is drawn in 

Figure 4(c). it shows that the perfect electric 

potential is intermediating the porous curves 

along the radial coordinate. the electric 

potentials are increasing and then decreasing to 

fulfill the boundary conditions. Figure 4(d) 

depicts the variation of displacement over the 

radius with different values of porosity factor 𝛽. 

The displacement is increasing for a plurality of 

cylinders and then decreases near the outer 

surface. The displacement perfect cylinder is 

intermediate to the porous ones from 𝑟 = 0.2 to 

𝑟 = 0.68 and then the perfect cylinder is less 

than the corresponding ones. 

 

 

Figure 4. Influence of porosity parameter on stresses, electric potential, and displacement with mechanical loads 

and insulated FGP cylinder. 

Table 3. Influence of porosity parameter with mechanical loads and insulated FGP cylinder. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 -2.8749 -2.9462 -3.0603 -2.8453 -2.9860 12.6892 

0.5 -2.5772 -2.6284 -2.7065 -2.5199 -2.6422 7.66251 

0.7 -2.5029 -2.5130 -2.5717 -2.4114 -2.4604 5.04483 

𝜎̅𝑟 

0.3 -0.40261 -0.41144 -0.42445 -0.33275 -0.34762 1.1152 

0.5 -0.49802 -0.50677 -0.52040 -0.40466 -0.42027 1.0378 

0.7 -0.47791 -0.46253 -0.47132 -0.38482 -0.37664 0.75215 

𝜎̅𝜃 

0.3 -1.1298 -1.1484 -1.1740 -0.94047 -0.97151 1.8025 

0.5 -0.66258 -0.66945 -0.67737 -0.53846 -0.55045 0.096468 

0.7 -0.47792 -0.46739 -0.46914 -0.37949 -0.37265 -0.32326 

𝜓̅ 

0.3 0.09788 0.09291 0.08245 0.09717 0.08879 1.5127 

0.5 0.11176 0.09483 0.06229 0.11670 0.08620 4.5335 

0.7 0.12291 0.09715 0.04660 0.13652 0.08897 7.0083 

Case 3: The porous cylinder with purely 

electrical potential distribution on the inner 

surface and grounded on the external one. There 

is an absence of mechanical loading on the 

porous sphere. The cylinder in this status is like 

an actuator. The dimensionless take the image: 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {𝜎𝑟, 𝜎𝜃,
𝜓

𝜓1
}. 

The product of this case is recorded in Table 4 

and Figure 5. Table 4 clarify the value of 

displacement, stresses, and electric potential on 

an actuator porous cylinder for the various value 
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of porosity parameter 𝛽 and grading index 𝑙. It's 

sharp from the table data that the value at 𝑙 = 5 

and 𝑙 = 10 in a perfect cylinder for stresses, 

radial displacement, and electric potential is 

greater than the values of a porous cylinder with 

different porosity factors 𝛽. But, in the case of 

𝑙 = 20 the value of porous cylinder for 

displacement, stresses, and electric potential is 

the biggest ever. 

The illustration of this case is shown in Figure 

5. The radial stress appears in Figure 5(a), we 

note from them that the radial stress is 

decreasing from 𝑟̅ = 0.2 to 𝑟̅ = 0.32 and then 

increasing to verify the mechanical boundary 

condition. The perfect radial stress is amidst the 

porous cylinder curves. Figure 5(b) present the 

hoop stress along the radial direction on the 

cylinder. the hoop stress is growing through the 

radii of the cylinder. The perfect hoop stress is 

amidst the porous cylinder from 𝑟̅ = 0.2 to 𝑟̅ =
0.7 and then the perfect cylinder curve is greater 

than the porous ones. The electric potential is 

plotted in Figure 5(c). The figure shows that the 

electric potential accepts the electric boundary 

conditions of the cylinder. The perfect electric 

potential curve is in the middle of the porous 

electric potential curves of the cylinder. Figure 

5(d) presents radial displacement through the 

radii direction. Displacement is increasing 

during the radial direction. The largest and 

smallest values of curves are porous curves. 

 

 

Figure 5. Influence of porosity parameter on stresses, electric potential, and displacement without mechanical 

loads and with electrical loads on FGP cylinder.

 

Table 4. Influence of porosity parameter without mechanical loads and with electrical loads on the FGP cylinder. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 -1.8122 -2.3702 -2.7502 -2.4092 -2.8750 53.9792 

0.5 -1.1287 -1.5127 -1.7707 -1.5057 -1.8474 35.47022 

0.7 -0.58478 -0.87986 -1.0777 -0.83104 -1.1155 26.12623 

𝜎̅𝑟 

0.3 -0.15634 -0.22034 -0.26326 -0.18608 -0.23488 5.0738 

0.5 -0.10081 -0.16857 -0.21316 -0.13377 -0.18926 5.1042 

0.7 -0.01202 -0.06360 -0.09962 -0.03911 -0.08708 4.0054 

𝜎̅𝜃 

0.3 -0.45335 -0.57997 -0.66384 -0.49105 -0.59221 9.4770 

0.5 -0.079617 -0.11955 -0.14417 -0.085901 -0.12680 2.2292 

0.7 0.080403 0.069685 0.062023 0.077378 0.057503 0.24261 

𝜓̅ 

0.3 0.91159 0.86122 0.82530 0.87435 0.84529 6.004 

0.5 0.77021 0.61256 0.50177 0.64296 0.54097 16.660 

0.7 0.72737 0.48793 0.31614 0.52399 0.36740 25.447 

Case 4: Finally, the general case is a combination of mechanical and electrical 
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loading. In this study, the FGP cylinder effect 

by mechanical loading and grounded electric 

potential distribution on the internal surface but 

on the outer surface, there exist electric 

potential and is free of mechanical loading. 

Numerical outcomes are shown in Figure 6 and 

tabulated in Table 5. The dimensionless stresses 

and electric potential distribution on the form: 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {
𝜎𝑟
𝑃1
,
𝜎𝜃
𝑃1
,
𝜓

𝜓2
}. 

 

 

Figure 6. Influence of porosity parameter on stresses, electric potential, and displacement with mechanical and 

electrical loading on FGP cylinder. 

 

Table 5. Influence of porosity parameter with mechanical and electrical loading on the FGP cylinder.

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 2.7568 2.6111 2.5191 3.2902 3.1258 12.98012 

0.5 1.8836 1.7694 1.6986 2.2689 2.1354 8.5907 

0.7 1.6787 1.5804 1.5177 2.0169 1.8956 6.5947 

𝜎̅𝑟 

0.3 -0.25190 -0.27119 -0.28312 -0.24467 -0.26370 0.65428 

0.5 0.09788 0.07769 0.06389 0.10357 0.08310 0.99638 

0.7 0.17490 0.17767 0.16731 0.17517 0.17770 0.88445 

𝜎̅𝜃 

0.3 0.67481 0.63318 0.60784 0.71090 0.66855 2.4074 

0.5 0.27485 0.25517 0.24338 0.29209 0.27056 0.67164 

0.7 0.21207 0.20610 0.19900 0.21782 0.20918 0.23444 

𝜓̅ 

0.3 -0.08961 -0.09703 -0.10252 -0.14180 -0.14748 0.7511 

0.5 0.16025 0.13199 0.11249 0.09052 0.06597 2.8694 

0.7 0.53669 0.49350 0.46186 0.47678 0.43895 4.7991 

In Table 5 the numerical data of radial 

displacement, radial and hoop stresses, and 

electric potential distribution in the porous 

cylinder are presented. The displacement and 

stresses for the perfect cylinder are less than 

those of the porous cylinder for all different 

values of grading index 𝑙 and for several values 

of 𝛽. The perfect cylinder for electric potential 

is greater than the porous cylinder for electric 

potential on 𝑙 = 5 and 𝑙 = 10  but on 𝑙 = 20 the 

porous electric potential values are the greatest. 

Figure 6(a) indicates the radial stress along the 

dimensionless radius direction. The radial stress 

satisfies the boundary condition is equal to one 

on the inner surface and vanishes on the outer 

one. all radial stress curves with different 

porosity factor 𝛽 coincide. Also, the hoop stress 

curves with various porosity factors 𝛽 

coincided, this is clear from figure 6(b). The 

hoop stress is decreased over the radius of the 

cylinder. Figure 6(c) demonstrates the electric 

potential. Figure 6(c) shows that the electric 
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potential is grounded on the inner surface and 

equal to one on the outer surface. The perfect 

electric potential curve is in the middle of the 

porous electric potential curves. Figure 6(d) 

clarify the radial displacement with different 

value of porosity factor 𝛽 along the radius of the 

cylinder. The perfect displacement curve is the 

smallest one. 

Numerical investigation for a porous sphere 

Temperature distribution and moisture 

concentration in the case of porous spheres are 

shown in Figure 7 as stated by equation (9) for 

𝑛 = 2. Figure 7(a) presents the temperature on 

a porous sphere along the radius direction. The 

temperature is increasing on the sphere radius. 

Also, the moisture curve describes 

monotonically increasing along the radii.  

Case 1: The sphere mechanical loading is free 

and insulated. The dimensionless stresses and 

electric potential take the form: 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {𝜎𝑟, 𝜎𝜃, 𝜓}. 

Table 6 explains various locations of radial 

displacement, stresses, and electric potential in 

perfect and porous piezoelectric hollow spheres 

with different values of grading index and 

porosity parameter. All data in the table 

accepted that values in the perfect sphere are 

larger than the porous sphere values. 

 

Figure 7. Temperature distribution and moisture condensation in FGP hollow sphere. 

 

Figure 8 describes the effect of stresses, electric 

potential, and displacement on a hollow sphere 

with different values of porosity factor and for 

𝑙 = 12. It clarifies from Figure 8 that is almost 

like Figure 3 which illustrates the hollow 

cylinder. Figure 8(a) displayed the radial stress 

along the sphere radius. The radial stress also 

satisfies the boundary condition and the perfect 

sphere curve intermediates the porous sphere 

over the radial direction. The hoop stress is 

plotted in Figure 8(b). Notice that the hoop 

stress is growing over the sphere radii. The 

perfect sphere curve firstly amidst the porous 

sphere curves and then the perfect sphere be the 

largest one. Figure 8(c) presents the electric 

potential of a hollow sphere through the radii. 

The electric potential is compatible with the 

grounded electric boundary condition. Figure 

8(d) demonstrates the radial displacement of the 

sphere. The displacement is monotonically 

increasing along the radius direction. The 

perfect curve is intermediating the porous 

sphere curves. 

 

Table 6. Influence of porosity parameter without mechanical loads and insulated the FGP sphere. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 -0.41008 -0.75826 -0.98747 -0.73852 -1.0054 -6.4463 

0.5 -0.16257 -0.33974 -0.45233 -0.29001 -0.4442 -2.8832 

0.7 0.14361 0.024557 -0.05191 0.10532 -0.01579 -1.4312 

𝜎̅𝑟 

0.3 -0.090555 -0.17352 -0.22676 -0.13383 -0.19308 -1.2147 

0.5 -0.031054 -0.089722 -0.12637 -0.053910 -0.10147 -0.72737 

0.7 0.040523 0.012301 -0.010693 0.027975 0.000737 -0.34785 

𝜎̅𝜃 

0.3 -0.24048 -0.32898 -0.38427 -0.26098 -0.32935 -1.3175 

0.5 -0.010511 -0.038681 -0.054181 -0.006821 -0.039151 -0.19168 

0.7 0.12604 0.11710 0.10916 0.12351 0.10749 0.09891 

𝜓̅ 

0.3 0.07593 -0.0045289 -0.05941 0.001690 -0.04515 -1.2903 

0.5 0.22823 0.04708 -0.075882 0.06351 -0.48066 -2.8644 

0.7 0.38569 0.15601 -0.00244 0.17539 0.03443 -3.6068 
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Figure 8. Influence of porosity parameter on stresses, electric potential, and displacement without mechanical 

loads and insulated FGP sphere. 

Case 2: The sphere sensor is studied in this case 

with interior mechanical pressures only 𝑃2, and 

grounded electric potential. Suppose 

dimensionless has style 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {
𝜎𝑟
𝑃2
,
𝜎𝜃
𝑃2
, 𝜓}. 

The discussion of the sphere sensor is 

represented in Table 7 and Figure 9. Table 7 

expounds on the variation in displacement, 

stresses, and electric potential for several values 

of porosity factor. For radial displacement and 

electric potential, Perfect sphere values are 

more major than the porous ones while all 

values of perfect radial and hoop stresses of the 

sphere are less than the porous sphere value 

except for 𝑙 = 20. 

 

 
Figure 9. Influence of porosity parameter on stresses, electric potential, and displacement with 

mechanical loads and insulated FGP sphere. 
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Figure 9 demonstrates the radial stress, hoop 

stress, electric potential, and radial 

displacement in this case. Figure 9(a) shows the 

radial stress along the sphere radius. The radial 

stress increase while the porosity factor 

increases. The perfect radial stress of the sphere 

is the smallest one. Figure 9(b) explains the 

hoop stress along the radii. The hoop stress 

monotonically increases along the sphere 

radius. Also, the perfect hoop stress of the 

sphere is the smallest one. Electric potential is 

illustrated in Figure 9(c) with different porosity 

factors 𝛽. The electric potential satisfies the 

grounded boundary condition. Finally, Figure 

9(d) presented the radial displacement with 

various porosity parameters. The displacement 

is monotonically increasing along the sphere 

radius. The perfect displacement sphere curve is 

between 𝛽 = 0.2 and 𝛽 = 0.3. 

Table 7. Influence of porosity parameter with mechanical loads and insulated the FGP sphere. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 -1.6015 -1.6953 -1.8024 -1.6397 -1.7749 -4.4244 

0.5 -1.3712 -1.4092 -1.4539 -1.3604 -1.4208 -2.6012 

0.7 -1.3574 -1.3433 -1.3635 -1.3111 -1.3100 -1.9847 

𝜎̅𝑟 

0.3 -0.56150 -0.58134 -0.60379 -0.47661 -0.50247 -0.9982 

0.5 -0.59218 -0.60155 -0.61390 -0.49124 -0.50586 -0.80694 

0.7 -0.53459 -0.51154 -0.51443 -0.43841 -0.42084 -0.58415 

𝜎̅𝜃 

0.3 -0.94701 -0.96550 -0.98596 -0.80127 -0.82684 -1.3038 

0.5 -0.58106 -0.58125 -0.58217 -0.47473 -0.47861 -0.59900 

0.7 -0.43117 -0.41132 -0.40744 -0.34255 -0.32646 -0.42463 

𝜓̅ 

0.3 0.06813 0.042826 0.013637 0.06482 0.034707 -0.5748 

0.5 0.10248 0.04700 -0.01709 0.09637 0.02785 -1.3491 

0.7 0.16019 0.09382 0.01218 0.15538 0.07218 -1.7072 

Case 3: In this case, the sphere actuator is 

shown without any mechanical loading and 

grounded outer surface, The electric potential 

on the internal surface of the sphere. The 

dimensionless can take the form: 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {𝜎𝑟, 𝜎𝜃,
𝜓

𝜓1
}. 

The numerical outcomes are reported in Table 8 

and Figure 10. Table 8 shows that values of 

displacement, stresses, and electric potential on 

the perfect functionally graded sphere are more 

major than the porous ones. 

The discussion in Figure 10 is like the 

investigation in Figure 5. Figure 10(a) 

demonstrates the radial stress along the radial 

direction. The radial stress achieves the 

mechanical boundary condition. Figure 10(b) 

shows the hoop stress over the sphere radius. 

The hoop stress is growing over the radius 

direction. The perfect hoop stress curve is firstly 

in the middle of porous curves and then the 

perfect curve is the greatest one. The 

dimensionless electric potential is illustrated in 

Figure 10(c). The curves satisfy the grounded 

boundary condition on the outer surface and 

equal one on the inner one. The perfect electric 

potential curve is intermediate between the 

porous electric potential curves. Figure 10(d) 

presented the radial displacement over the 

sphere radii. The perfect displacement is amidst 

the porous displacement curves. 

Table 8. Influence of porosity parameter without mechanical loads and with electrical loads on the FGP sphere. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 -1.3475 -1.8049 -2.0927 -1.8522 -2.1997 -8.9219 

0.5 -0.5831 -0.80835 -0.94666 -0.79325 -0.98451 -3.9937 

0.7 -0.10063 -0.24753 -0.33836 -0.19031 -0.33505 -2.0767 

𝜎̅𝑟 

0.3 -0.29582 -0.40241 -0.46835 -0.34403 -0.41848 -1.6797 

0.5 -0.15657 -0.23021 -0.27436 -0.18318 -0.24130 -1.0125 

0.7 -0.02590 -0.06588 -0.09333 -0.04065 -0.078378 -0.50753 

𝜎̅𝜃 

0.3 -0.43963 -0.55070 -0.61798 -0.46561 -0.56905 -1.7677 

0.5 -0.04230 -0.07364 -0.09067 -0.04095 -0.07436 -0.26257 

0.7 0.12457 0.11485 0.10706 0.12035 0.10229 0.09414 

𝜓̅ 

0.3 0.83345 0.72435 0.65405 0.74841 0.68345 -0.8574 

0.5 0.69209 0.44787 0.29086 0.48986 0.33733 -3.1452 

0.7 0.69390 0.38652 0.18472 0.42927 0.23905 -4.2633 



Magneto-Electric Influence on a Functionally Graded … Scientific Journal for Damietta Faculty of Science 12(1) 2022,183-200 

196 

 

 
Figure 10. Influence of porosity parameter on stresses, electric potential, and displacement without mechanical 

loads and with electrical loads on FGP sphere. 

Case 4: In case the force is a collection of 

mechanical pressure on the inner surface and 

electrical loading on the outer sphere surface. 

Numerical discussion is shown in Table 9 and 

Figure 11. Take the dimensionless in the form 

{𝜎̅𝑟, 𝜎̅𝜃, 𝜓̅} = {
𝜎𝑟
𝑃1
,
𝜎𝜃
𝑃1
,
𝜓

𝜓2
}. 

Table 9 compares radial displacement, radial 

stress, hoop stress, and electrical potential for a 

sphere with various grading indexes 𝑙. Note 

that, all variables are very sensitive to the 

difference in the grading parameter 𝑙. The table 

explains that for the identical value of radii 𝑟, 

the displacement and hoop stress the porous 

values are greater than the perfect values except 

for 𝑙 = 20. but on the radial stress and electric 

potentials, the values of the porous sphere are 

minimum than the identical ones in the perfect 

sphere. 

Figure 11(a) demonstrates the radial stress 

along the sphere radius. The radial stress 

concurrent with the mechanical boundary 

condition is equal to one on the inner surface 

and vanishes on the outer one. Figure 11(b) 

shows the hoop stress curves with various 

porosity factors 𝛽. It clarifies that the hoop 

stress curves are similar in behavior, this is clear 

from Figure 11(b). The hoop stress is decreased 

along the radii of the cylinder. The perfect hoop 

stress curve is the smallest one. Figure 11(c) 

indicated the electric potential. Figure 11(c) 

shows that the electric potential satisfies the 

electric boundary condition. The perfect electric 

potential curve is intermediates to the porous 

electric potential curves. Figure 11(d) presents 

the radial displacement with the various values 

of porosity factor 𝛽 along the radius of the 

sphere. The perfect displacement curve is the 

smallest one. 

Table 9. Influence of porosity parameter with mechanical and electrical loading on the FGP sphere. 

 𝒓̅ 
Perfect FGPM (𝜷 = 𝟎) Porous FGPM (𝜷 = 𝟎.𝟐) 

𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 𝒍 = 𝟓 𝒍 = 𝟏𝟎 𝒍 = 𝟐𝟎 

𝑢̅ 

0.3 1.3467 1.1236 0.96435 1.3946 1.2188 -2.5962 

0.5 0.60302 0.47956 0.39716 0.64659 0.53259 -1.1835 

0.7 0.59092 0.50200 0.44177 0.65788 0.56117 -0.44139 

𝜎̅𝑟 

0.3 -0.0780 -0.13422 -0.17256 -0.10251 -0.14494 -0.86275 

0.5 0.09782 0.05603 0.028014 0.087418 0.05164 -0.39016 

0.7 0.12206 0.10909 0.091258 0.11635 0.10342 -0.14339 

𝜎̅𝜃 

0.3 0.21134 0.14772 0.10644 0.21997 0.15761 -0.53873 

0.5 0.07707 0.05163 0.037502 0.086036 0.05819 -0.05414 

0.7 0.14817 0.13979 0.13123 0.14836 0.14443 0.12470 

𝜓̅ 

0.3 0.1889 0.1420 0.1057 0.1051 0.0793 -0.7912 

0.5 0.6494 0.5416 0.4597 0.5115 0.4476 -1.5225 

0.7 1.0006 0.8620 0.75599 0.84530 0.7623 -1.7857 
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Figure 11. Influence of porosity parameter on stresses, electric potential, and displacement with mechanical and 

electrical loading on FGP sphere. 

Conclusions 

The survey discusses the influence of the 

porosity coefficient 𝛽 under mechanical and 

electrical loading on a hygrothermal medium. 

Material characteristics of functionally graded 

piezoelectric hollow structures (cylinder and 

sphere) are indicated as a power radius function. 

Differential equations of equilibrium and 

Maxwell equations are solved by using the 

semi-analytical technique. The boundary 

conditions are discussed for a set of four 

different cases. During numerical outcomes and 

discussion there are some remarkable points as 

follows: 

 The stresses, electric potential, and radial 

displacement are sensitive to the value of 

the porosity parameter.  

 By choosing harmonious values for the 

porosity factor we gain specific values for 

stresses, displacement, and electric 

potential.  

 the semi-analytical technique is active for 

obtaining particularly stressed value in 

perfect and porous structures. 

 By comparing the results in the case of a 

porous hollow cylinder 

o The cylinder mechanical loading is free 

and insulated with different grading 

index, the stresses, radial displacement 

and electric potential values in a porous 

cylinder are less than perfect values at 

the same radius except for 𝑙 = 20. 

o The cylinder with mechanical loading 

and grounded electric potential for 

several values of grading index, all 

values of stresses, displacement and 

electric potential in a porous cylinder 

are less than perfect values at the same 

radius except the electric potential in a 

perfect cylinder is less than porous 

cylinder for 𝑙 = 20. 

o In the cylinder without mechanical 

loading and grounded outer surface with 

a different grading index, all values of 

stresses, displacement and electric 

potential in a porous cylinder are less 

than perfect values at the same radius 

except for 𝑙 = 20 the values of stresses, 

displacement and electric potential in 

the porous cylinder is biggest ever. 

o The cylinder with mechanical and 

electrical loading, stresses and 

displacement for the perfect cylinder is 

less than those of the porous cylinder for 

all different values of the grading index. 

The electric potential values for the 

perfect cylinder are greater than the 

porous cylinder for  𝑙 = 5 𝑎𝑛𝑑 𝑙 = 10 
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but on 𝑙 = 20 the porous electric 

potential values are the greatest. 

 By comparing the results in the case of a 

porous hollow sphere 

o In the sphere without mechanical 

loading and insulated with a different 

grading index, the stresses, radial 

displacement and electric potential 

values in a porous sphere are less than 

perfect values at the same radius. 

o The sphere with mechanical loading and 

insulated for several values of grading 

index, displacement and electric 

potential in a porous sphere are less than 

perfect ones while perfect values for 

radial and hoop stresses are less than the 

porous sphere except for 𝑙 = 20. 

o In the sphere without mechanical 

loading and with internal electrical 

loads with different grading index, all 

values of stresses, displacement and 

electric potential in a porous sphere are 

less than perfect values at the same 

radius. 

The sphere with mechanical and electrical 

loading, displacement and hoop stress for the 

porous sphere are greater than those of the 

perfect sphere, but the electric potential and 

radial stress values for the porous sphere are 

minimum than the perfect ones. 
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 الملخص العربي

نوعة من مادة مسامية متدرجة التأثير الكهربي المغناطيسي على الهياكل المجوفة المصعنوان البحث: 

 الخواص في بيئة حرارية رطبة

 1*رانيا محمد الطنطاوي
 .، كلية العلوم، جامعة دمياط، مصرالرياضياتقسم  1

 

يعرض البحث تأثير المسامية والمجال المغناطيسي على نموذج رياضي لهياكل مجوفة مصنوعة من مادة متدرجة الخواص موصلة 

)أسطوانة وكرة( في بيئة حرارية رطبة باستخدام طريقة الحل شبه التحليلي. يخضع النموذج الرياضي لتأثير  (FGP)للكهرباء 

العديد من القوى بالإضافة إلى المجال المغناطيسي الذي لا يزال يمثل دراسة صعبة. القوى المؤثرة عبارة عن ضغط ميكانيكي على 

والتأثير الحراري بالإضافة إلى تغير الجهد الكهربي بين السطح الداخلي والخارجي.  السطح الداخلي والخارجي والمجال المغناطيسي
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الدراسة افترضت أن جميع خصائص المادة متدرجة بواسطة دالة كثيرة حدود في نصف القطر. تناقش النتائج العددية أربعة شروط 

ضع للتأثير الحراري والرطوبة والمجال المغناطيسي. حدية مختلفة لكل نموذج موضحة الضغط الميكانيكي والمجال الكهربي الخا

 للتحقق من النتائج العددية تم مقارنة النتائج بين الهياكل المجوفة المسامية وغير المسامية للمواد متدرجة الخواص. في نهاية الدراسة

 .لميكانيكية والتكنولوجيا الحديثةاأوضحت النتائج العددية تأثير معامل المسامية في النماذج الرياضية وأهميته في الهندسة 


