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Abstract

In this article, the pseudopotential technique of Sagdeev is applied to study the evolution of large-
amplitude ion acoustic waves in electron-positron-ion (e-p-i) plasma. The electrons and positrons
energies are taken in the ultra-relativistic region. Periodic, rarefactive and compressive solitary and
super-periodic waves are predicted in the plasma system. All probable phase plots, including super-
periodic, periodic, homoclinic trajectories are obtained using the bifurcation analysis of dynamical
system. The effects of phase speed of ion acoustic traveling wave, chemical potential and other
plasma parameters on the characteristic properties of the periodic wave, super periodic wave and the
Sagdeev pseudopotential are investigated. The findings of this paper may be valuable in
understanding the fundamental features of nonlinear waves in dense celestial bodies such as neutron
stars and white dwarfs.

Keywords: bifurcation analysis, super-nonlinear wave, degenerate unmagnetized ultra-relativistic
plasma, Sagdeev’s pseudopotential approach.

Introduction

inter-particle distance for degenerate particles is
shorter than the de-Broglie wavelength. As
examples of QDPs, white dwarfs are mostly
made up of massive components like hydrogen,

Recently, quantum degenerate plasma (QDP)
attracted the attention of many researchers (P.
A. Markowich etal, 1990; L. K. Ang et al, 2003;
T. C. Killian, 2006; M. Marklund and P.K.
Shukla, 2006; S. H. Glenzer et al, 2007; G.
Brodin et al, 2008; M. Marklund et al, 2008).
From quantum mechanical point of view, the
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helium, carbon, and oxygen at core, with lighter
elements near the crust (S. L. Shapiro et al,
1983; D. Koester and G. Chanmugam, 1990; A.
A. Mamun and P. K. Shukla, 2010).
Furthermore, White dwarf interiors were
observed and theoretically simulated to feature
a dense solid enveloped by degenerate particles
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(such as electrons and positrons) and ions (D.
Koester and Astron, 2002; R. S. Fletcher et al,
2002; E. Garcia-Berro et al, 2010; A. Witze,
2014; A. Vanderburg et al, 2015; S. Sultana and
R. Schlickeiser, 2018). In those interstellar
objects, the degenerate electron number density
is very high. Chandrasekhar provides a
mathematical explanation for the equation of
state for degenerate electrons in such compact
objects for two limits, namely the
nonrelativistic and ultra-relativistic limits.
Regarding this, Chandrasekhar obtained the
mathematical criteria for the white dwarf (S.
Chandrasekhar, 1931; S. Chandrasekhar, 1931,
S. Chandrasekhar et al, 1935) using Fermi—
Dirac statistics for electrons. In the case of ultra-
relativistic degenerate dense plasma, which
exist in interstellar compact objects like white
dwarfs, the total energy of the fermions
(electrons) is much larger than relativistic
energy i.e., E >>mc2

Evidently, the dense e-p-i plasma is one of the
most important and interesting types of QDPs.
Many researchers are interested in studying the
excitation of nonlinear acoustic modes (F. Haas
et al, 2003; S. A. Khanand and W. Masood,
2008; S. Mahmood and A. Mushtag, 2008; E. F.
El-Shamy et al, 2009; W. Masood et al, 2009;
S. K. El-Labany et al, 2010; F. Haas, 2016; S.
Islam et al, 2017) in QDP since it is essential for
understanding the main features of compact
components in astrophysical environment (F. C.
Michel, 1991; S. Ali et al, 2007; A. Rahman et
al, 2013; E. F. EI-Shamy, 2015; E. F. EI-Shamy
et al, 2016). QDP model with zero-temperature
Fermi gas can be suitable to describe nonlinear
acoustic waves (F. Haas et al, 2003; S. A.
Khanand and W. Masood, 2008; S. Mahmood
and A. Mushtag, 2008; E. F. EI-Shamy et al,
2009; W. Masood et al, 2009; S. K. El-Labany
et al, 2010; F. Haas, 2016; S. Islam et al, 2017).
Based on the assumption of nonzero
temperature, the theoretical simulation of QDP
models has been improved by Dubinov and his
research team (A. E. Dubinov, 2007; A. E.
Dubinov and A. A. Dubinova, 2008; A. E.
Dubinov and M. A. Sazonkin, 2009; A. E.
Dubinov et al, 2010; A. E. Dubinov and M. A.
Sazonkin, 2010; A. E. Dubinov and 1. N.
Kitaev, 2014). Later, the modified model has
been used in the study of propagation (A. El-
Depsy and M. M. Selim, 2016), instability (E.
F. El-Shamy et al, 2020), and overtaking
collisions (E. F. El-Shamy et al, 2020) of
nonlinear isothermal ion-acoustic waves in the
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QDPs, where they are stated to be more realistic
guantum plasma models.

However, many earlier studies are restricted to
the physical nature of the periodic and nonlinear
solitary traveling waves in the QDPs. Recently,
Dubinov et al. (A. E. Dubinov et al, 2012)
investigated a new class of nonlinear waves in
plasmas which are super-nonlinear waves. They
presented a topological classification of such
super-nonlinear waves based on the dynamical
system of the Hamiltonian. Numerous
researchers lately become interested in studying
these structures in various plasma systems. A
multi-component nature of the plasma was
revealed to be a crucial condition for the
existence of these super-nonlinear waves.
Superperiodic waves and supersolitons can
exist in a three-species plasma. In this
direction, the well-known bifurcation method is
essential to investigate nonlinear ion acoustic
periodic and super-periodic waves for several
plasma models (A. Saha, 2017), in particular
QDPs. Interestingly, the bifurcation analysis
has been widely used to investigate the physical
nature of nonlinear waves for various plasma
models in different plasma situations (U.K.
Samanta et al, 2013; A. Saha and P. Chatterjee,
2014; B. Pal et al, 2015; A. Saha and P.
Chatterjee, 2015; A. Saha et al, 2015; M. M.
Selim et al, 2015; D.T. Patrice et al, 2017; S.K.
El-Labany et al, 2018). Hence, the key objective
of the simulation model in this study is to
numerically obtain and solve the Hamiltonian
system in order to characterize the physical
behavior of nonlinear ion acoustic periodic and
super-periodic waves in QDPs. We also studied
the influence of different plasma parameters on
these nonlinear waves and the Sagdeev
pseudopotential. Moreover, the implications of
the present work in white dwarfs are
investigated.

This paper is arranged as: Equation of
state for degenerate e-p Fermi gas is introduced
in Section 2. Basic quantum hydrodynamics
fluid equations are presented in Section 3. The
description of the dynamical system is shown in
Section 4. At the end, Section 5 contains the
findings and comments. The conclusion is
finally described in Section 6.

Equation of state for degenerate electron-
positron Fermi gas

The density of states of a relativistic
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Fermi gas with kinetic energy E in a volume V
is given by (A. Saha et al, 2019)

G(E) = 2;’;;;;3 VEZ —m2c* (1)

where gs(= 2s + 1) is the degenerate factor of
states, s is the half-integer spin of fermions, m
is the mass of the relativistic moving particle
and c is the speed of light. The density of states

for ultra-relativistic fermions, E >> mc?, can be
expanded as
1
— 2 _ 2.4 4 . 2
G(E) —ihe3 (E Smec + ) (2)
Hence, the number of particles of Fermi gas in
this case is expressed as (A. Saha et al, 2019)

®  G(E)dE
N = [ o @)
0 em(E—P—)_i_l
where p is the chemical potential of fermions
which equals to the Fermi energy at

temperature, T=0 and Kg is the Boltzmann
constant. Eq. (2) can be substituted into Eq. (3)
to yield

N(u,T)
n(pT) =
1 4
(o) 2—— 2.4 ces
_ 1 J- (E S mct + )dE (4)
m2h3c3 ), eﬁ(E—u)_i_

By using the Sommerfeld expansion and after
some mathematical manipulations, the number
density of the fermions can be obtained as (A.
E. Dubinov and A. A. Dubinova, 2008; A. E.
Dubinov and I. N. Kitaev, 2014; A. Saha et al,
2019; A. E. Dubinov et al, 2012)

2

8m [pd T
n(p, T) = W( + + (— (KgT)?

)t )

Based on equation (5), the ultra-relativistic
degenerate electron and positron distributions
are roughly obtained as (A. Rahman et al, 2013;
A. E. Dubinov, 2007; A. E. Dubinov and M. A.

Sazonkin, 2010)
llj3 2 2
3" (? ()

()

8n
nj(w, Tj) = (ho)?

1
—5miet) )

where j = e and p for electron and positron,
respectively. In the present study, we suppose
that the compression-expansion wave process is
isothermal i.e., the Fermi temperature for
electrons and positrons, Tr = constant. In this
situation, degenerate plasma is regarded to be
collisionless and prefect (A. E. Dubinov and A.
A. Dubinova, 2008; A. E. Dubinov and M. A.
Sazonkin, 2009; A. E. Dubinov et al, 2010; A.
E. Dubinov and 1. N. Kitaev, 2014).

(6)
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Furthermore, thermodynamic equilibrium can
be produced due to uncorrelated Coulomb
interaction between particles (A. E. Dubinov et
al, 2010; A. E. Dubinov and M. A. Sazonkin,
2010).

Essentially, by considering zero mass of
electrons and positrons (mj— 0) in the
momentum equations, and performing some
algebraic  manipulation, the relationship
between the chemical potential of
electrons/positrons and the electrostatic wave
potential ¢ can be obtained as (A. E. Dubinov
et al, 2010; A. E. Dubinov and M. A. Sazonkin,
2010)

W = Hoj T ed. (7

Substituting the chemical potential y; in Eq. (6),
we get

hoy kep) [
U= ho? Ly 3 ) +<_(KBTj)2

1
—5mfc )(uo]+ed>)] j=ep.
In Eq (8), Hoj and ed can be scaled by the
Fermi energy, EF, while nj is scaled by n; (i.e.,

l»10] q)

®)

oo £ and n; — ; where Ef; =
(37r noj)3hc). Hence, the unperturbed number
densities of electrons and positrons can be
obtained, substituting ¢ = 0, in Eq. (8) to get

2
2N (00
9T o |3 T\ 3T R o
m}c* 81TE1§]-C
C2EE | (ho)E Y

3 2 2 4
— [ Mo n? (KgTj)” _ mjc
where Clj = (T + Hoj <? E%‘j - ZE%]- .

Governing equations of plasma model

In this article we considered an
unmagnetized plasma system, consists of an
ultrarelativistic degenerate inertialess electrons
and non-degenerate inertial cold positive and
negative ions as well as positrons. The ions are
treated as classical fluid. The dynamics of the
nonlinear ion acoustic wave (IAWSs) spreading
in such system can be studied based on; the
continuity equations

an

10a
2t (n w) = (102)
n
_atn+ (npu,) =0. (10b)

The momentum equations:
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u; ou; 6(1)
- = -1 11a
(aat T aax) % (112)
u u
_n )= M— 11b
(at““gx) Max’ -
where M = —2, and m;,, is the mass of positive

mjp
ions and m;,is the mass of negative ions,
respectively. Poisson’s equation for this system
can be expressed as

2
ZXZ (Bne — an, —n; + yn,), (12)
where B=2 y =lmang o =20 Here,
Noj Noi Noj

ng, ug (s =1,n) are the number density and
velocity of the inertial cold, positive and
negative ions respectively. Based upon Egs. (8)
and (9), the normalized relativistic degenerate
electrons and positrons number densities,
respectively are expressed as

1 3
(Cle + C2e¢ + HOeq)z q;, )» (133)

e = Cle
1 242
n, = C (Clp CZpGFd) + HOpGFq)
1
p e (13b)
—oi—),
3
where
9
Gy =12 + n_Z(KBT]-) m] c* ’ (9)
) ) 3 Eéj ZEE—]
j=enp,

. All physical quantities in Eqgs.
(10) to (12) are scaled as n;

T
and op = T—Fp
Fe

nj
—>—,ne -
Noj

e Np Uj ¢‘ IJ']
N 2 —, 44 2 —, ) t -
nee’ P Nop ! Cr (I) K= EFj
X .
tw;, X - " where Cp = ,/EFe/mi is the ion

Fermi acoustic speed, w; = (y/4me?ny;/m;) is

the ion plasma frequency and Ag=

V Epe/4me?ny; is the Fermi Debye radius. At
equilibrium, the charge neutrality condition
reads B =a+1—y(nge/no =nop/no;i +
1 — ngn/no;) Here, ng;, Mo, Noe, and ngy, are
the unperturbed number densities of positive
ions, negative ions, ultra-relativistic degenerate
electrons and positrons, respectively.
Propagation of superperiodic waves is
characterized by large amplitudes. We are
dealing with large-amplitude modes through the
arbitrary amplitude Sagdeev pseudopotential
analysis.

First step in Sagdeev pseudopotential method is
using the transformation, ¢ = x — vt, one can
obtain the planar dynamical system for the
plasma system expressed by Egs. (10) to (12) as
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dn;

—UE +— & (n ) = (15a)
—vd& + (n u,) =0 (15b)
d{ n>n
duy; dup\y  dé
(_VE +u d—f) =% (162)
( dun tu dun) _yd¢ (16b)
ET ¢’
17
dfz = (Bn, — an, —ny +yn,), (17

where v indicates the phase speed of ion
acoustic traveling wave. Integrating Egs. (15),
(16) and applying the boundary conditions u; =
0,u, =0,n; = 1,n, = 1and $=0 as § —=oo,
one can obtain:

n; = (1——(1))_2 =1+—5d+-—¢°
' 2 ; v? 2v4 (18a)
2 .3
+ 206 ¢%
2M 2
n, = (1 + 2(]))
v (18b)
L M 3M? ) 5M3 3
B —;(b 204 ¢ 206 2p6 ¥

The higher order terms in Eq. (18) are ignored.
Since v > 1 ; the coefficient % < 1, only first

four terms are taken into account. Substitute
ng, Ny, npand n; from Egs. (13) and (18) into
Poisson equation, (17), to get

a%¢ _ (o Cze Cop _ 1 _ ﬂ)
o5z (B Cre TOOFG, T2 ¢+ 9
Poe _ o gzMop_ 3 | 3¥M7) .o
(B Cie Feip 2v4 204 ) ¢+
o 3 1 5  5yM®) .3
(B 3C1e + aog 3Cip 206 206 )(b '
or
dz¢ 20
T =ad+b?+cdd, (20)
where
= (glze ep 1 _¥M —
a_(BC +a0FC 2 v2>' b
Hoe 2Mop 3  3yM?
(B Cie OF Cyp 204 + 2v4 )' and

Description of the dynamical system

To confirm the possibility of finding solitary,
periodic and superperiodic wave solutions, we
applied the bifurcation analysis. The analysis of
phase plane using bifurcation theory gives
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significant features of the dynamical system
(DS). It is known that each trajectory in the
phase portrait gives a traveling wave solution.
Hence the formula. (20) can be expressed as DS
of the form (S. H. Strogatz, 2007)

do _

3 Z, (21-a)
% = ¢p(@a+ b+ cdh?) (21-b)
i (a c .

The DS in Egs. (21) corresponds to the
Hamiltonian of the system. The Hamiltonian
function can be expressed as
1
EZZ +V (q)) = h,
where h is the integration constant. The value of
the constant of integration h is evaluated from

the boundary conditions ¢ — 0, d—q’—>0,
d?¢

(22)

d¢

w 0, at & — +oo. The value of integration

constant h affects the type obtained waves.
Furthermore, the Sagdeev pseudopotential is
determined as

— E 2 E 3 S 4
V) = - (307300 + 70
It is clear that the DS (21) has three equilibrium
points; Po(¢o, 0), P1(¢1, 0) and P2(¢p2, 0), where

(23)

— _ b b\?2 a
b= 0 and 12 = — Py (Z—C) - These
points are derived by solving the next equations;
@ _n L_o. (24)
dé dé

The Jacobin matrix can be obtained by
expressing the dynamical system (21) as

dp ~ (25-a)
E - F(q)’ Z) =1z,
j—; = G = pla+bptcpr).  ED
Then:
F(92) OF(,2)
7= (Shasisn) o)
0 oz

From Eq. (25) the Jacobian matrix can be
derived as

_ 0 1 (27)
/= (a+2b¢+3c¢2 0)’
and the determinant is
M = Det]($;,0) = — (a+ 2b ¢; 28)

+3cd),
where i =0, 1, 2. If M < 0, then Pi(¢i, 0) is a
saddle node while for M > 0, Pi(di, 0) is a center
(A. E. Dubinov et al, 2011).

Results and discussions

It is important to note that the Hamiltonian
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system depends mostly on the physical
parameters in the suggested model. Based on
the dynamical system bifurcation analysis in
Eq. (21), we study the bifurcation of solitary,
periodic, and super-periodic waves using
symbolic computation. The phase graphs of the
dynamical system vary based on the critical
points and enclosed separatrix layers (A. E.
Dubinov et al, 2011). Every trajectory in the
dynamical system's phase portrait corresponds
to a single travelling wave solution. The
trajectories are classified as super-periodic,
SPT(m,n), periodic, PT(m.n), superhomoclinic,
SHT(m,n), and homoclinic, HT(m,n), where m
indicates the number of centers surrounded by
the trajectory and n is the number of
separatrices enclosed by that trajectory (A. E.
Dubinov et al, 2011). As a result, in order to
analyze the bifurcation in the system, Eq. (21),
we must first acquire all possible trajectories
based on plasma characteristics. Figure (1-a),
displays the phase plot of the nonlinear
dynamical system (21) for v=2.2, o= 0.1, M=
0.75,y = 0.1 and 6 = 0.3 where § is the ratio of
unperturbed number density of protons to
unperturbed number density of electrons (6=
Ngp/Nge) and y is ratio of unperturbed number
density of negative ions to unperturbed number
density of positive ions (y = ng, /ng;). In this
case, we get three forms of qualitatively
different nonlinear trajectories, which are
periodic  trajectories (PTi0), homoclinic
trajectories  (HT10) and  super-periodic
trajectory (SPT24). Itis essential to note that for
the homaoclinic trajectories (HT1,0), one can get
solitary wave solutions, and for periodic
trajectories (PT10), one can get periodic wave
solutions (A. Saha et al, 2015) which are shown
in Figs. (1-c) and (1-d). There is also a super-
periodic wave solution, as seen in Fig. (1-€)
which is corresponding to the super-periodic
trajectory (SPT21). The plot of Sagdeev
pseudopotential change with ¢ for the same
parameters is shown in Fig. (1-b). It is proved
that the nonlinear dynamical system contains
three critical points Py(dy, 0),P; (b4, 0) and
P, (5, 0). In Fig. (1-b), the pseudopotential has
three fixed points; two centers; P;(d4,0) and
P,(¢$,,0) and one one saddle; Py(dy,0),
ensuring the presence of a periodic ion-acoustic
super-nonlinear wave (SNW) in examined
system (A. E. Dubinov et al, 2011). Local
minima of potential graphs suggest solitary
solutions if V (p)— 0 when ¢ — 4o (A. E.
Dubinov, et al, 2012). In Fig. (1-b), the wave
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solution in the positive zone of ¢ reveals a
compressive soliton, whereas the wave solution
in the negative region of ¢ refers to a rarefactive
soliton. The depth of the potential well
represents the steepness of the solitons, and the
width of the potential well represents the
amplitude of the solitons, revealing important
information on the structure of solitary waves.
The effect of chemical potential, u.., on Sagdeev
pseudopotential V (¢) is displayed in Fig. (2-a).
The figure shows that the depth of Sagdeev
potential is decreasing with the growth in
chemical potential, p., indicating that the
steepness of the solitary wave shrinks. On the
other hand, the wave width broadens in the
negative region of ¢ and shrinks in the positive
one with increasing p,. Hence the amplitude of
the rarefactive solitary waves grows with
growing of py, while the amplitude of the
compressive solitary wave decreases with
increasing Wo.

Fig.(1-b)

Fig.(1-e)

¢ 0

e 4 2 0 2 4 6

Fig. 1 (a) Phase portrait of the dynamical system, (b)
Sagdeev pseudopotential V (¢), (c) periodic wave
around Pi(¢1,0) and (d) periodic wave around
P2(d2,0), (e) super-periodic wave withv =2.2, u.=
0.1, M=0.75,y = 0.1 and § = 0.3.

Fig.2-2) [~ 7
-

Fig2-b) =77

4 3 =2 -1 0 1 2 3
L4

Fig. 2. Influence of (a) chemical potential u., (b)y (=
non/No) (€) & (= ngp/mge) on  Sagdeev
pseudopotential V ().
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The influence of y on Sagdeev pseudopotential
V (o) is displayed in Fig. (2-b). This figure
shows that the depth of Sagdeev potential is
diminishing with the growth in vy, leading to a
reduction in the steepness of the solitary wave.
It is shown that the wave width broadens with
increasing y, indicating an amplification of the
amplitude of the compressive solitary wave.
Fig. (2-c) displays the effect § on Sagdeev
pseudopotential V (¢). It is observed that the
depth of pseudopotential V (¢p) grows
as ¢ increases, and hence the steepness of the
solitary waves rises. It is shown that the width
of pseudopotential V (¢) is enhanced for the
positive values of ¢ and shrinks for negative
values of ¢, Fig. (2-c). Hence, the amplitude of
the compressive solitary waves is amplified
with growing 8. In contrast, the amplitude of
the rarefactive solitary wave decreases.

The effect of the chemical potential p., y and 4,
on the periodic wave around Pi(¢1,0) are
displayed in Fig. 3, respectively. It can be
interpreted from Fig. (3-a) that the periodic
wave’s width Srows as the
chemical potential yo increases; indicating an
increase in the dispersion of the wave. On the
other hand, the amplitude diminishes as
Lo increases indicating a decrease in energy and
an increase in the nonlinearity of the system.

7
Fig(3-a) |- -0 Fig(3-b) |- 1=

-2 -1 [ 1 2

Fig. 3. Influence of (a) chemical potential ., (b)
Y (= non/Noi) (€) 6 (= ngp/nge) ON periodic wave
around P1(¢1,0).

In Fig. (3-b), it is noticed that when vy is
increased, the amplitude of the periodic wave
around P1(¢1, 0) is amplified which means that
the energy of plasma increases and the
nonlinearity decreases. It is shown that the
width of the periodic wave is broadened, and
this means an increase in the dispersion of the
wave. Fig. (3-c) shows that when § is increased,
the amplitude of the periodic wave around
Pi(¢1, 0) is increasing, which means an
enhancement in the energy of the plasma,
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indicating a decrease in the nonlinearity of the
system. On other hand, the width decreases with
higher values of §, indicating a decrease in the
dispersion of the wave.

The effects of ., y and § on the super-periodic
wave are displayed in Figs. (4). Figure (4-a)
shows that the growth in the chemical potential
o shows a reduction in width of superperiodic
waves, which indicates a decrease in wave
dispersion.  Further, the amplitude of
superperiodic waves rises with increasing
values of chemical potential p,; this behavior
refers to a growth in the energy of the system.
From the physical point of view, the
nonlinearity decreases with higher values of
chemical potential.

VY

=]
Fig(4-c) |- 603

A
L

Vo
Fig.(4-b) |- 10°

2

EwA
A

AN

Fig. 4. Influence of (a) chemical potential p., (b)
Y (= non/N0i) () 8 (= ngp/nge) 0N superperiodic
wave.

In Fig. (4-b), it is shown that the width of the
super-periodic wave is broadened with higher
values of y, and this means an increase in the
dispersion of the wave. By increasing y, also
the amplitude of the superperiodic wave is
amplified and this represents an increase in the
energy of the plasma indicating a reduction in
the nonlinearity of the system. It is shown in
Fig.(4-c) that the width of the super-periodic
wave is enhanced with higher values
of &, which means an increase in the dispersion
of the wave. On the other hand, by
increasing &, the amplitude of the super-
periodic wave decreases, indicating a reduction
in energy and an enhancement in nonlinearity of
the system.

Conclusion

In a degenerate ultrarelativistic plasma
composed of electrons, positrons, and positive
ions, bifurcation analysis of IA periodic and
superperiodic waves was examined. All
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potential phase charts, including periodic,
homoclinic, and superperiodic trajectories, have
been successfully displayed using bifurcation
analysis of the dynamical system. In ultra-
relativistic degenerate four species quantum
plasma, superperiodic waves have been found
under specific boundary conditions and for
definite range of plasma parameters.
Furthermore, rarefactive and compressive
solitary waves are shown to exist. The effect of
different plasma characteristics on the periodic
wave, super periodic wave, and Sagdeev
pseudopotential features is investigated. The
chemical potential, the ratio of unperturbed
number density of negative ions to unperturbed
number density of positive ions, and the ratio of
unperturbed number density of protons to
unperturbed number density of electrons have
all been found to have a significant effect on the
energy and nonlinearity of the system. The
findings of this work could help researchers
better understand the underlying properties of
nonlinear ion-acoustic periodic and
superperiodic waves in dense objects like white
dwarfs and neutron stars.
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