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Abstract  

This paper investigates the chaotic behavior of an in-plane electrodynamic tethered satellite system 

(EDTSS) operating in a circular orbit under the influence of Earth's oblateness, represented by the 

J2 zonal harmonic. The system is modelled using the dumbbell model, consisting of two point masses 

connected by an inelastic tether. The equations of motion are derived through the Lagrangian 

formulation, incorporating the effects of the Lorentz force generated by the current interacting with 

Earth’s magnetic field and the radial acceleration due to the oblateness of Earth. To analyze the 

conditions under which chaos may arise, the Melnikov method is applied, leading to the 

identification of a necessary condition for the occurrence of chaotic motion. Based on this condition, 

the parameter domains that are likely to result in chaotic behavior are determined. To confirm the 

analytical findings, numerical simulations are conducted and discussed. The results highlight the 

critical role of the oblateness effect and its interaction with electrodynamic forces in governing the 

nonlinear dynamics of tethered satellite systems. 

Keywords: Chaos; Electromagnetic Force; Melnikov Analysis; Poincaré Section; Tethered Satellite 

System. 

 

Introduction 

Space tether systems are a promising solution 

for enabling highly efficient and low-cost space 

operations, including debris removal (Ma X and 

Wen H, (2023) ; Razzaghi P et al., (2021) ; 

Svotina V and Cherkasova М, (2023) ), energy 

generation (Liu J et al., (2020) ; Liu J and 

Mcinnes CR, (2019) ; Hu W et al., (2018) ), and 

asteroid exploration (Mashayekhi MJ and Misra 

AK, (2016) ; Zhong R and Wang Y, (2018) ). 

As space activities expand, these systems offer 

a sustainable and effective approach to future 

mission design. Thus, the tethered satellite 

system (TSS) has emerged as one of the most 

active areas of research in space sciences 

(Huang P et al., (2018) ; Sanmartin JR et al., 

(2010) ; Kumar K, (2006) ; Modi V et al., 

(1990) ; Sánchez-Arriaga G et al., (2024) ). A 

typical TSS consists of two or more satellites 
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connected by a tether element. Extensive 

studies have focused on these systems' 

modelling, dynamics, and control (Hong AaT et 

al., (2024) ; Andrievsky B et al., (2022) ). Both 

Newtonian and Lagrangian mechanics are 

commonly applied to derive the equations of 

motion, with either orbital elements or libration 

angles used to represent the system states. The 

tether itself is modelled in various ways, either 

as massless or massive, rigid or flexible, 

depending on the objectives and assumptions 

specific to each study ( Aslanov V and Ledkov 

A, (2012) ; Troger H et al., (2010) ). 

The dynamics of a tethered satellite mission are 

significantly influenced by various 

environmental perturbations that must be 

carefully considered during modeling and 

control design. Among the most prominent 

perturbing forces are aerodynamic drag, which 

is particularly relevant in low Earth orbits; solar 

radiation pressure, which induces subtle but 

continuous force variations; and the oblateness 

of the Earth, represented by the J2 zonal 

harmonic, which alters the gravitational field 

and affects orbital stability. In addition to these, 

other perturbations such as third-body 

gravitational influences and magnetic torques 

may also impact the system depending on the 

mission profile. Accounting for these forces is 

essential to accurately predict system behaviour 

and ensure the success and longevity of tethered 

satellite operations. 

Given the critical role of Earth's oblateness, 

represented by the J2 coefficient, many 

researchers have explored its influence on 

orbital and tethered system behaviour. Zheng P 

et al., (2008)  developed a mathematical model 

using Lagrangian mechanics and numerical 

simulations to analyse the deployment of a 

tether-assisted deorbit system under Earth's J2 

perturbation. Their results showed that J2 

mainly affects in-plane motion during 

deployment, without inducing out-of-plane 

motion when the initial out-of-plane angle is 

zero. Yu B and Jin D, (2010)  modelled a 

viscoelastic tethered satellite system and 

examined the effects of J2 and thermal 

perturbations. They found that J2 significantly 

affects deployment, especially with friction, 

while thermal effects mainly influence retrieval, 

resulting in distinct motion behaviours. Yu B et 

al., (2016)  extended the analysis of a flexible 

tethered satellite system under additional 

perturbations, including air drag, solar radiation 

pressure, and orbital eccentricity. Using a 

simplified two-degree-of-freedom model, they 

conducted numerical simulations that revealed 

bifurcations, quasi-periodic oscillations, and 

chaotic motions. They concluded that J2 

perturbation and thermal effects strongly 

influence pitch dynamics and must be 

considered, while air drag and solar pressure 

have a lesser impact depending on orbital 

altitude. Yu B et al., (2020)  applied Melnikov 

analysis to determine the conditions under 

which chaotic motion arises in a tethered 

satellite system operating in a circular orbit. 

Their study considered the combined effects of 

Earth’s J2 perturbation and aerodynamic drag, 

showing that these perturbations can induce 

chaotic dynamics even when the tether is 

modelled as rigid. Yuan W et al., (2024)  

studied the chaotic motion of a tether-sail 

system in polar orbits, considering J2 

perturbation and orbital eccentricity. Using 

Lagrangian modelling and Melnikov analysis, 

they showed that both J2 and eccentricity 

enhance chaotic behaviour. 

Electrodynamic tethers (EDTs) provide key 

advantages over traditional tether systems by 

generating Lorentz forces without propellant, 

enabling efficient orbit control and power 

generation. Studies have examined the impact 

of Earth’s J2 perturbation on EDT dynamics. 

Tikhonov A et al., (2017)  showed that an 

electrodynamic control system can effectively 

counteract gravity gradient torque caused by J2 

in near-Earth orbits.  

To the best of our knowledge, no previous study 

has analytically examined the impact of Earth's 

oblateness (J2 perturbation) on the dynamics of 

electrodynamic tethered satellite systems. 

Therefore, this paper aims to fill this gap by 

focusing on the analytical characterization of 

such effects. The paper is organized as follows: 

In Section 2, the system is modelled as a 

dumbbell model with non-negligible tether 

mass, and the equations of motion are derived 

using the Lagrangian approach. In Section 3, the 

analytical Melnikov method is applied to 

identify conditions under which chaotic motion 

may occur. Section 4 presents numerical 

simulations that validate the analytical results. 

Finally, the conclusions are discussed in 

Section 5. 
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Mathematical Model 

 

Fig. 1 Tethered Satellite System 

Consider a tethered satellite system (TSS) 

orbiting Earth in a circular orbit, as shown in 

Fig. 1. A dumbbell model describes a TSS, 

which consists of a mother satellite connected 

to a subsatellite with a tether, where 1,m 2 ,m and

tm are their masses, respectively. 

An inertial frame, ( , , ),X Y Z is considered, 

which is centered at Earth's center. The X -axis 

is oriented toward the vernal equinox, the Z -

axis aligns with Earth's rotation axis, and the Y

-axis lies within Earth's equatorial plane, 

maintaining a right-handed coordinate system. 

A rotating frame, ( , , ),r ne e e centered at 

system's mass center, has a relative position 

vector to the inertial frame, .cr The three unit 

vectors, ( , , ),r ne e e points radially outward 

opposite to Earth's center of mass, oriented 

along the velocity direction, and completes the 

right-handed coordinate triad, respectively. 

The mother satellite and subsatellite have 

position vectors relative to the system's mass 

center, 1ρ and ,2ρ respectively. The variable

represents the in-plane angle, while l denotes 

the tether length at any given time. 

Suitable expressions for both kinetic and 

potential energies are essential for developing 

the system's Lagrangian. By integrating kinetic 

energy over the tether length and adding the 

kinetic energies of both the mother satellite and 

the subsatellite, one can obtain the total kinetic 

energy, ,T as follows Aslanov V and Ledkov A, 

(2012)  

2 2 21 1
. ( ( ) ,

2 2
c c eT m l l     r r  (1) 

where
1 2 t

m m m m   is a total mass, the dot 

represents the derivative with respect to time,

  1 2

1 2

/ 2 / 2

) / 6(
e

t t

t t

m m m m

m m m m
 



 

 
is a reduced 

mass, and is the true anomaly. 

By summing the potential energies of the 

system's elements, noting that the tether length 

is very small compared to the radius of the 

mass's center, the system's potential energy, ,W

can be written on the form 

 
2

2

3
3cos 1 ,

2

e

C C

lm
W

r r


     (2) 

where  is Earth's gravitational strength 

constant. 

Using Eqs. (1) and (2), Lagrangian, ,L can be 

constructed as .L T W   The system's 

Lagrangian equations of motion have the form 

 ,i

i i

d L L
Q

dt q q

 
 

 

 (3) 

where ,
i

q l are generalized coordinates, and

i
Q are not potential generalized forces. 

Using the following nondimensional 

transformation
( ) ( )

, ,
r

d d l
L

dt d l



  equations of 

motion in nondimensional form can be written 

as 

2 2
2( 1) 3cos sin ,

e

QL

L l

   
 


      (4) 

2 2

2
( 1) 3cos 1 ,l

e

Q
L L  

 
         (5) 

the accent means a derivative with respect to the 

variable and 2 3./ cr   

The system is under the influence of the Lorenz 

force resulting from the current flow through 

the tether interacting with the magnetic field 

and J2 perturbation since the oblateness of Earth 

is considered. A non-tilted dipole model of the 

magnetic field is considered; its components in 

orbital frame, ,  ,
r

B B
and ,

n
B are determined as 

follows Stevens RE, (2008) : 

3
2 sin sin ,m

r

c

B v i
r


   (6) 

3
cos sin ,m

c

B i
r




  (7) 

3
cos ,m

n

c

B i
r


  (8) 

where i is an orbital inclination and
15 2

7.8510 ,/
m

N Am  is the magnitude diploe 
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of Earth. It's assumed that a constant current, ,I

flows through the tether, and the magnetic field 

vector remains unchanged along the entire 

length. This constancy is attributed to the 

relatively small length of the tether compared to 

the system's mass radius. Following the 

principle of virtual work, the generalized 

electromagnetic torques , ,e leQ Q can be written 

in the form: 

 

,

2
2 1

,

1 2

(

2

)
,

0.
l e

e n

t

Q

Il m m
Q B

m m m
  

 





 (9) 

The effect of Earth's oblateness on the tethered 

satellite system can be evaluated using Earth's 

nonhomogeneous potential function, ,U as 

mentioned in Kéchichian JA, (2021)  as 

2

1 (sin( )) ,

n

n n

c cn

R
U J P

r r








  
    
   
  (10) 

where nJ is a zonal harmonic of order ,n R is 

Earth's equatorial radius, is the declination of 

the system's mass center to the equatorial plane, 

and (sin( ))nP  is the Legendre polynomial of 

order n in sin( ).  Neglecting the 3J and higher 

zonals, replacing sin( ) by / cz r , and using the 

transformation matrix to the rotating frame, one 

can obtain the radial perturbation acceleration 

as 

 22

5

2
23

1 3sin sin .
2

c
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c
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i

r


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r
a  (11) 

Follows Zhong R and Zhu Z, (2013) , the 

oblateness torque on the satellites caused by the 

acceleration is in the form 

, sin( ) sin( )cos(2 ),obQ        (12) 

where 
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where 1( / 2) / .m tM m m m   

In this paper, we delve into the nonlinear 

dynamics of the pitch motion during the station-

keeping phase, where the tether length remains 

constant. Substituting Eqs. (9), (12) into Eq. (4) 

with 0,L  noting that ,, ,obeQ Q Q   gives 

1 2 33cos sin sin sin cos2 ,              

 (14) 
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 (15) 

One can see from Eq. (14) the electrodynamic 

tethered satellite system under Earth's 

oblateness is a nonlinear nonautonomous 

system. 

Analysis of Chaotic Motion 

In this section, the Melnikov function is 

employed to derive the necessary condition 

under which the dynamical system may exhibit 

a chaotic behavior. 

Using    1 2, , ,
TT

   θ =  one can obtain 

the state equation of Eq. (14) as  

   , , θ f θ g θ  (16) 

with 

1 2

2 1 1

1

1 1 2 1 32

( ) ,
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0
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f

f

g

g
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 


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f

g

θ

θ

 

 (17) 

The perturbation vector, ( , ) ( , ),p  g gθ θ is 

periodic of period .p   

When ( , ) 0, g θ the system corresponds to the 

unperturbed Hamiltonian case, with the first 

integral given by 

2 2
2 1

1 3
sin ,

2 2
E    (18) 

where a constant, ,E represents the total kinetic 

energy of the system. 

 
Fig. 2 Phase portrait of unperturbed system 
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Fig. 3 Heteroclinic orbits 

Figures (Fig. 2 and Fig. 3) present the phase 

portrait of the unperturbed system and the 

heteroclinic orbits that reach two different 

saddle points, ( / 2,0), 1,2.ip i   The 

heteroclinic orbits can be written in the form Yu 

B et al., (2020)  

    

 
10 20

1

,

sin (tanh( 3 )), 3sech( 3 ) .

v v

v v

  

  
 

 (19) 

In the case of the perturbed system when

( , ) 0, g θ near the equilibrium points, the 

heteroclinic orbits may split into unstable and 

stable manifolds. Chaos likely happens if these 

manifolds intersect transversally; according to 

Melnikov's analysis, the Melnikov function 

must have a simple zero ( Yu B et al., (2022) ; 

Aslanov V, (2017) ). 

The Melnikov function is given by Aslanov VS, 

(2024)  

     0 0 0 0, ,M v v v dv 


 



   f g  (20) 

with  0 0, .v p  

Substituting Eq. (17) into Eq. (20), using Eq. 

(19), yields 
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 (21) 

calculating the integrals in Eq. (21), noting that 

when an odd function is integrated over a 

symmetrical interval gives zero. Under the 

mathematical condition, 0sin 2 ranges in the 

interval[ 1,1], the Melnikov function  0M v

has simple zeros if 

3

2

0.2881.



  (22) 

Eq. (22) gives the necessary, but not sufficient, 

condition under which the system may exhibit a 

chaotic motion near the saddle points. 

According to Eqs. (15) and (22), the following 

four cases can be concluded 

a) Case one: This is the case when both 2 and

3 vanish, the dynamical system equation 

represents the unperturbed case, which is 

plotted in Fig. 2 and Fig. 3. 

b) Case two: This is the case when the system 

is perturbed only by the effect of the 

Lorenz force, i.e. 3 0  and 2 0,  chaos 

doesn't occur since the condition, Eq. (22), 

is not satisfied. 

c) Case three: This is the case when the 2J

effect constitutes the sole perturbation of 

the system, i.e. 3 0  and 2 0,   chaos 

might occur since Eq. (22) is satisfied. 

d) Case four: This is the case when the system 

is perturbed by both the Lorenz force and 

the oblateness acceleration, i.e. 3 0  and

2 0,   chaos may be estimated using Eq. 

(22). 

Numerical Results 

This section presents a numerical simulation to 

verify the necessary condition, Eq. (22). The 

system's parameters are given as follows. The 

mother satellite mass, 1 1020 ,m Kg the 

subsatellite mass, 2 70 ,m Kg and the tether 

mass, 3.4 .tm Kg The system orbits Earth in a 

circular orbit at an altitude of 600 ,Km with an 

inclination of 63 .  

One can note that 2 and 3 are dependent on the 

current passing through the tether, ,I the 

inclination of the orbit, ,i and the orbital altitude,

.H  

Firstly, at a specific altitude, using Eq. (22), the 
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chaotic zone in the parameter domain  ,I i is 

plotted in Fig. 4. The initial states of the system 

are ( , ) ( / 2 /100,0),       where / 100 is 

a given perturbed angle, positioning the system 

near one of the unstable saddle points

( / 2,0). The point  0.001, / 6 lies in the 

chaotic zone, which corresponds to the system's 

orbit having an inclination of / 6 with one mA 

current flowing through the tether. Fig. 5 

presents a Poincaré section, indicating that the 

system is chaotic. Fig. 6 shows that the pitch 

motion angle is in irregular oscillation. If the 

orbit inclination is altered to / 60,  the system 

is in a nonchaotic zone, which is described by 

Fig. 7 and Fig. 8, showing that the system is in 

a periodic motion. 

Secondly, the chaotic zone in the parameter 

domain,  , ,i H is plotted in Fig. 9 at 1 .I mA  

The point ( / 6,900) lies in the nonchaotic 

zone. Fig. 10 being a Poincaré section, 

demonstrates that the system exhibits a periodic 

solution. Fig. 11 confirms this observation, 

showing that the pitch angle maintains a regular 

periodic oscillation with respect to the variable

.  When the inclination is adjusted to / 60, the 

system transitions into the chaotic zone. This 

transition is illustrated in Fig. 12, A Poincaré 

section corresponding to this state indicates that 

the system undergoes chaotic motion. 

Furthermore, Fig. 13 reveals that the pitch angle 

behaves as an irregular oscillator. 

Finally, at an inclination of / 30, the chaotic 

region within the  ,I H parameter space is 

illustrated in Fig. 14. The point

 40.3 10 ,600 , lies within this chaotic region. 

Fig. 15 and Fig. 16 confirm this result, 

demonstrating that the system exhibits chaotic 

behavior. However, when the current flowing 

through the tether is increased to 20.3 10 the 

system no longer displays chaotic motion. Fig. 

17 and Fig. 18 illustrate the resulting tumbling 

periodic motion of the system. 

 
Fig. 4 Parameter domain for chaos 

 

Fig. 5 Poincaré section 

 

Fig. 6 Pitch angle versus   

 

Fig. 7 Poincaré section 
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Fig. 8 Pitch angle versus   

 

Fig. 9 Parameter domain for chaos 

 

Fig. 10 Poincaré section 

 

Fig. 11 Pitch angle versus   

 

Fig. 12 Poincaré section 

 

Fig. 13 Pitch angle versus   

 

Fig. 14 Parameter domain for chaos 

 

Fig. 15  Poincaré section 
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Fig. 16 Pitch angle versus   

 

Fig. 17 Tumbling Poincaré section 

 

Fig. 18 Pitch angle versus    

Conclusions 

In this work, the chaotic motion of an 

electrodynamic tethered satellite system in a 

circular orbit under the influence of Earth's 

oblateness (J2 effect) was analyzed. The system 

was modelled using a dumbbell configuration, 

representing two point masses connected by an 

inelastic tether. The equations of motion were 

derived via the Lagrangian approach, 

incorporating the effects of both the Lorentz 

force generated by the electrodynamic 

interaction and the radial acceleration due to 

Earth's oblateness. 

To assess the potential for chaotic behavior, the 

Melnikov method was applied to establish a 

necessary condition for the onset of chaos. This 

condition enabled the identification of 

parameter domains in which chaotic motion is 

likely to occur. Numerical simulations were 

then conducted to validate the analytical 

predictions. 

From the Melnikov-based analysis, three key 

scenarios emerged: 

1. When the system is perturbed solely by 

the Lorentz force, chaotic motion does 

not occur. 

2. When the perturbation arises solely from 

the oblateness effect, chaotic motion may 

arise. 

3. When both the Lorentz force and 

oblateness effect are present, chaos may 

occur depending on whether the system 

parameters satisfy the necessary 

condition. 

These findings indicate that the presence of the 

Lorentz force alone is insufficient to induce 

chaos, even in combination with the J2 

perturbation, unless the parameter values fall 

within the critical domain defined by the 

Melnikov analysis. This highlights the 

importance of carefully selecting system 

parameters to avoid unintended chaotic 

behavior in tethered satellite missions. 
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 الملخص العربي

 الحركة الفوضوية لنظام قمر صناعي كهروديناميكي مربوط تحت تأثير تفلطح الأرض في مدار دائريعنوان البحث: 

 ، يحيى أحمد عبد العزيز1أبو الفتوح عبد النبي، عبد الحكيم 2مجدي عبد العزيزأحمد  ،1*أحمد يوسف

 .، دمياط، مصردمياطالعلوم، جامعة  كليةقسم الرياضيات، 1
 ، القاهرة، مصر.(NRIAGلبحوث الفلك والجيوفيزياء ) المركز القومي 2

المدار تحت تأثير تفلطح مربوط  يتحرك في مستوى  يتناول هذا البحث دراسة السلوك الفوضوي لنظام قمر صناعي كهروديناميكي

تم نمذجة النظام باستخدام نموذج الدمبل، والذي يمثل كتلتين نقطيتين متصلتين بواسطة حبل غير مرن. تم  )2J معامل) الأرض

اشتقاق معادلات الحركة باستخدام منهج لاغرانج، بعد احتساب العزوم الناتجة عن قوة لورنتز والتسارع الشعاعي الناتج عن التفلطح 

 .الأرضي

تم تطبيق تحليل ميلنيكوف لاشتقاق شرط ضروري لحدوث الحركة الفوضوية، مما أتاح تحديد مجالات القيم التي قد يظهر فيها هذا 

 .السلوك. كما تم دعم النتائج التحليلية بمحاكاة عددية تؤكد صحة هذا الشرط

 :أظهرت النتائج ثلاث حالات رئيسية

 .حدث سلوك فوضويعند وجود قوة لورنتز فقط، لا ي .1

 .عند وجود تأثير التفلطح فقط، قد يحدث سلوك فوضوي .2

عند وجود كلا التأثيرين معاً، فإن حدوث الفوضى يعتمد على تحقيق الشرط الضروري الذي تم التوصل إليه باستخدام  .3

 .تحليل ميلنيكوف

، ما لم تكن المعلمات ضمن  2Jمع وجود تأثير تشير هذه النتائج إلى أن وجود قوة لورنتز وحدها لا يكفي لإحداث الفوضى، حتى

المجال الحرج الذي تم تحديده. وتبرز هذه الدراسة أهمية اختيار معلمات النظام بعناية لتجنب السلوك الفوضوي غير المرغوب فيه 

 .في تطبيقات الأقمار الصناعية المربوطة
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